
Practical Git
Conf ident Git Through Practice
—
Johan Abildskov

Practical Git
Confident Git Through Practice

Johan Abildskov

Practical Git

ISBN-13 (pbk): 978-1-4842-6269-6			 ISBN-13 (electronic): 978-1-4842-6270-2
https://doi.org/10.1007/978-1-4842-6270-2

Copyright © 2020 by Johan Abildskov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484262696. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Johan Abildskov
Tilst, Denmark

https://doi.org/10.1007/978-1-4842-6270-2

To my wife Anette, who managed to create the space for
this book in our busy lives.

v

Table of Contents

Chapter 1: �Git Intuition�� 1

Version Control��� 1

Basic Git Concepts��� 3

The Repository��� 3

The Commit�� 5

The Branch and the Tag�� 6

Setting Up Git and the Git Katas��� 9

Git Clone��� 9

Getting Our Bearings in a Repository��� 14

Git Status�� 14

Git Log�� 15

Summary��� 17

Chapter 2: �Building Commits��� 19

What’s in a Workspace��� 19

Preparing Commits Using the Stage�� 22

Committing�� 29

Git Commit�� 29

Recovering from Oops Moments with amend�� 38

About the Author�� ix

About the Technical Reviewer�� xi

Foreword�� xiii

Acknowledgments��xv

Introduction��xvii

vi

Getting Clean Commits with .gitignore�� 40

Advanced .gitignore�� 42

Git Katas��� 46

Summary��� 47

Chapter 3: �Linear History��� 49

Branching Foundations�� 49

Keeping Track of Your HEAD��� 51

Committing on Your Branches�� 52

Checking Out a Previous Version��� 53

Seeing the Diff Between Different Versions��� 56

Git Katas��� 58

Summary��� 58

Chapter 4: �Complex Branching�� 59

Creating Branches�� 59

Working with Multiple Branches�� 61

Merge��� 62

Rebase�� 72

Tags�� 75

Detached HEAD��� 78

Git Katas��� 80

Summary��� 81

Chapter 5: �Collaboration in Git�� 83

Working with Remotes��� 83

Cloning��� 85

Synchronizing with Remote�� 87

Simplified Workflow��� 89

Fork-Based Workflows��� 96

Pull Request–Based Workflows��� 104

Table of Contents

vii

Git Flow�� 105

Git Katas��� 106

Summary��� 106

Chapter 6: �Manipulating History�� 107

Reverting Commits��� 107

Reset�� 110

Soft Reset��� 111

Mixed Reset�� 112

Hard Reset�� 113

Interactive Rebase��� 117

Git Katas��� 118

Summary��� 118

Chapter 7: �Customizing Git�� 119

Configuring Git��� 119

Aliases��� 123

Attributes��� 125

Diff and Merge Tools�� 131

Hooks��� 135

Katas�� 137

Summary��� 138

Chapter 8: �Additional Git Features��� 139

Git Bisect�� 139

Git Submodules�� 144

Git Large File Storage�� 154

Implementation�� 155

Tracking Files with Git LFS��� 156

Git Sizer�� 157

Converting a Repository to Git LFS��� 158

Git Katas��� 161

Summary��� 161

Table of Contents

viii

Chapter 9: �Git Internals��� 163

The Git Graph��� 163

Commits��� 164

Trees��� 168

Blobs��� 169

References��� 171

Versioning with Trees��� 173

Katas�� 178

Summary��� 178

Index�� 179

Table of Contents

ix

About the Author

Johan Abildskov works as a DevOps Transformation Lead

at Eficode in Denmark. He spends his time consulting on

DevOps tooling and culture. Git has a special place in his

heart. He teaches Git, talks about Git, and maintains the Git

katas (https://github.com/eficode-academy/git-katas).

He is a huge geek and a teacher at heart. He has spoken at

multiple DevOpsDays and at Git Merge several times. He

was on the All Things Git podcast with Ed Thomson, talking

about teaching Git. He is active in meetup groups and in

the DevOpsDays community, as well as speaking at both

external and internal events at companies. You can find him

on Twitter @RandomSort.  

https://github.com/eficode-academy/git-katas

xi

About the Technical Reviewer

Phil Nash is a developer evangelist for Twilio and a Google

Developer Expert living in Melbourne, Australia. He loves

working with Ruby or JavaScript to build web applications

and tools to help developers. He once helped build a website

that captured the world’s favorite sandwich fillings. He has

too many GitHub repositories and you can find him working

on some of them live on Twitch.

Away from the keyboard, Phil listens to ska punk, enjoys

discovering new beers, and runs the occasional half marathon.

Phil tweets at @philnash and you can find him elsewhere

online at https://philna.sh.

https://philna.sh

xiii

Foreword

Even before hearing Johan present at Git Merge, I had heard about git-katas. Git-katas

were introduced to me by someone in one of my classes. Immediately, I was intrigued

and impressed by the hands-on, bite size exercises for learning and practicing Git. The

most exciting and effective learning happens when it’s in context, and with Git, that can

be hard to pull off.

I’ve trained hundreds of developers on Git and GitHub. I can confirm that no matter

what anyone tells you, using Git without understanding it is stressful, scary, and risky.

Using Git can feel like you might accidentally break everything, and not understand

why. You may break it differently several times and still not know why. This makes

learning Git alongside your daily work unappealing. Anything that you are going to do

with Git, you probably are going to want to practice safely. By doing this, not only are you

protecting your code and yourself, but you open up the world of curiosity. Johan’s `git-

katas` exercises introduce the ideal opportunity to practice and learn.

There are many nuances with using Git. I often say “there is more than one way

to skin an Octocat,” a turn on the idiom meaning there are many different ways to

accomplish one goal. And so it is with Git: there are many different ways to accomplish

a goal, and by understanding how those different ways work through building a

strong mental model, you’ll be able to make the right decisions and understand the

implications instead of googling the right thing to type (although there’s nothing wrong

with that either, we all do it sometimes!).

Teaching Git presents a special challenge. It’s easy to get into the details, and there

are many rabbit holes in Git that one can become lost in. Johan’s focus on the structure

of how Git works, along with practical applications and exercises, teaches not only in

a way that will ramp people up to effective daily use with Git, but in a way that fosters

continuous, self-led learning that fits into the well-organized, scaffolded mental model.

Many try to teach Git the other way around; building a linear approach. Despite how

the history may look, Git isn’t always working as linearly as we’d like to think. By focusing

on the principles and mental model, and then how the daily commands work into that

model, Git can be learned in its full contexts as a distributed, snapshot-based version

control tool that is meant for daily use in real world team projects.

xiv

Reading and understanding Git is one thing. Using Git in daily life is something

else. But experimenting with Git, pulling it apart, making hypotheses about what to

expect and then seeing what happens; that is all something entirely different. By pairing

conceptual learning with hands-on activity and experimentation, Johan has built a

perfect environment to not only learn about and apply Git, but to spark curiosity and a

different way of thinking.

I’ve faced a few challenges with teaching Git. With these next questions, I’d invite you

to examine where you are as you read this book, and how you can most benefit from it:

What’s your experience with version control? If you haven’t used version control

before, then, congratulations. You are, in my opinion, in the best position to learn about

Git. If you have experience with other version control systems, particularly centralized

version control systems like SVN, ClearCase, TFS, etc., then you may have some

unlearning to do as a part of learning Git. If you have centralized VCS experience, don’t

ignore the mental model of Git.

Are you comfortable with the command line? Using the command line is a

requirement for this book, and is also the approach I insist upon when teaching Git.

If you want to use a GUI, that’s fine, but learning Git has nothing to do with using a

GUI. GUIs can be great, but they also obfuscate some of the things that Git does behind

the scenes. You will best be able to use Git with GUIs far more effectively and with far less

uncertainty if you first practice using Git and understand it fully from the CLI.

What does “Advanced Git” mean to you? I have found that many people are scared

away from Git because it’s too “hard”. Many other people are in search of the most

“advanced” technical topics they can find, and neglect the importance of the mental

model and most frequently used commands. You will learn the most from this book

if you set aside expectations, both of your level of existing knowledge and of what Git

topics and commands are relevant to you.

The Git community is expansive and highly technical. Even more than that, I would

describe the Git community as curious and detail-oriented. Luckily, curiosity and Git

pair well together. As you learn and teach Git, I encourage you to follow Johan’s lead with

`git-katas,` and explore your curiosity to see what happens.

Briana Swift
Senior Manager of Services Programs

Github

Foreword

xv

Acknowledgments

It is a huge privilege to be able to write a book. I owe it to my wife Anette that it has

been possible, even in the midst of COVID-19, and with two tiny and awesome humans

wreaking havoc.

I also owe thanks to my fantastic colleagues at Eficode, for teaching me Git, and

learning together with me. In particular, I want to thank Jan Krag, Thierry Lacour, Sofus

Albertsen, Christian Clausen, and Nicolaj Græsholt. I would not seem so smart about

Git if it had not been for you. A second thank-you goes out to Christian Clausen for also

suffering endless discussions about this book. I wish you and Five Lines of Codes the

success you deserve.

I feel lucky to have learned so much about Git, and to have been invited into the very

welcoming community around Git. I am grateful to the Git Merge community team for

fantastic events and for having me on stage.

I have discovered that it is a big endeavor to write a book and that is an obvious

advantage to go about it in structured and disciplined fashion. This is, to a large extent,

counter to my persistent way of working. As such goes an apology to the Apress team, but

most of all a thank-you for your patience and the opportunity goes out to Nancy Chen,

Louise Corrigan, and James Markham. A special thank-you goes to Phil Nash whose

constructive feedback raised not just the technical level of the book but also helped

shape the learning path.

xvii

Introduction

Git is a tool that software developers use every day, yet many developers do not feel

confident with the basic operations of Git and lose their cool when they leave the happy

path. Git is so pervasive that it is unlikely that you will work in a setting where you are not

using Git to develop your software. This means that you will get tremendous return on

investment on your efforts to build your Git skills. You will be a better, more productive

software engineer, every day, because you have learned Git thoroughly.

The book before you takes a hands-on approach to learning, and should you choose

to skimp on the exercises, you will be missing out on a big part of the learning. One thing

is the awareness I can give you through the written word, but it will not fasten itself and

become an active tool in your mind until you have applied it.

The exercises that we are using in this book are designed to be repeatable. Just like

a martial artist will go through the forms of movements until they are flowing freely and

become muscle memory, so can you go through the Git katas presented in this book

until you become proficient.

First, we build the right mental models, so we are sure we are thinking the right

way around Git concepts. I recommend you do not skip this, even if you have been

using Git already.

When we have covered the mental models, we dive into the basic Git functionality,

creating the snapshots or versions of our working directory that we can later jump

between with ease. We lay these snapshots out in a usable history in Chapters 3 and 4.

In Chapter 5, we go through common models of collaboration on source code using Git.

With these foundations in place, we end on three advanced chapters on

manipulating Git history, customizing Git, and finally some Git internals.

I hope you enjoy the book, the exercises, and will feel more confident in your further

work with Git.

1
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_1

CHAPTER 1

Git Intuition
We’ve all tried it. We get our Git repository in some inconsistent and irreconcilable

state. We have found many solutions on Stack Overflow and hesitantly pasted into our

command lines. But after each attempt at getting back to a sane state, we feel ourselves

sliding further and further away from resolving our Git problem. So we delete our local

repository, clone the repository, and start over. I know I have been in that situation

more than once. This situation is widespread and is symptomatic of a lack of intuition

about how Git works. We tend to choose the path of least resistance, and in Git terms,

that means we learn to commit, push, and pull. In some cases, we learn to work with

branches, but we become uncomfortable if we veer away from the happy path. This

book wants to avoid precisely that. We will build a solid foundation of intuition on top of

which we’ll apply concrete commands and solutions. This allows us to first reason about

the situations we find ourselves in and then select the right solution from our toolkit.

Because we have practiced, we can apply the solution with confidence.

This book wants to avoid precisely that. We will build a solid foundation of intuition

on top of which we’ll apply concrete commands and solutions. This allows us to first

reason about the situations we find ourselves in and then select the right solution from

our toolkit. Because we have practiced, we can apply the solution with confidence.

This chapter will build our intuition at a high level, and we will do our first

investigations of how that intuition maps to Git commands and how our workspace and

repository reflect these commands.

�Version Control
In this section, we will cover what types of issues and what concrete problems we try

to solve when we are using Git. This is the foundation and motivation for our entire

endeavor. Git is a version control system, but what does that mean in our day-to-day life?

Git is also known as a content-addressable file system. This is something that

permeates the entire way Git perceives the world and sets the boundary for what can

https://doi.org/10.1007/978-1-4842-6270-2_1#DOI

2

be done with Git. What this implies though is that Git, at its core, is about managing

files. When interacting with Git, we either manage versions of files and directories or

investigate the history of a workspace.

Many of us have ended up in a situation like Figure 1-1, where we have a

workspace with different versions of a project copied around, based on some arbitrary

naming convention. This is how it ends up when we do not actively version control our

software.

Figure 1-1.  Folders in a workspace with ambiguous naming, making it
nonobvious what the newest version is and how they relate

This ad hoc approach causes all sorts of difficult challenges. An important point to

make here is that none of these issues or challenges are inherent in the problems that

we are trying to solve or in the way we work. The tools are freely available; it is simply a

choice to work in an improper way. The following is a list of things that are impossible or

unnecessarily hard when working directly in the file system:

•	 How does each folder relate to each other?

•	 What is the latest version?

•	 What is the difference between two specific versions?

•	 What is the common base for two product variants?

•	 How do I revert a specific change in a product variant?

•	 At what point in time was this change introduced, and by whom?

•	 How do I merge these two folders?

In Figure 1-2, I show how the same folders could be united in a graph of workspaces.

This allows us to maintain a sense of how our software evolves over time.

Chapter 1 Git Intuition

3

These problems and much more are what Git solves for developers worldwide

every day. Before we go in and investigate our first Git repository, we need some of the

basic concepts described. Language is a powerful way to convey understanding, so I

recommend you try to be as pedantic as possible when talking about Git. This will help

you internalize the concepts. When you are a master, you can be as vague as you want.

�Basic Git Concepts
Now that I have provided a very rudimentary overview of the type of problems, I will dive

into the basic building blocks that we need to build an understanding of Git.

�The Repository
When we talk about Git at the high level, we talk about collaborating in repositories.

Many software developers share their code as open source on platforms like GitHub or

GitLab. Each software project is represented by one or more repositories, depending on

what strategy the organization behind the project contains. In many cases, a repository

represents a single source component, such as a software library or a product you can

download and run on your computer or website.

Figure 1-2.  The folders from Figure 1-1 maps over in a graph of workspaces. This
increases our understanding of the history tremendously

Chapter 1 Git Intuition

4

For most of this book, we will be working in a single repository, and for most of

the book, that repository will be local. That is, we will not collaborate or use an online

platform to synchronize our repository to.

A repository contains all the information that is available about our versioned workspace.

This includes all the commits, all the references, and the entire history of the repository.

Note N ew Git users, especially those that migrate in from another version control
system such as ClearCase or SVN, worry about the fact that the entire repository
resides locally on the developer’s PC. They fear that the repository will take an
unreasonable amount of space and that operations will be slow. Going into detail
on this topic is way beyond the scope of this book. The short answer is that it is
unlikely to become a problem for most workflows, and if it becomes a bottleneck,
there are tools and strategies to handle this.

All Git commands run in the context of a repository. This is true no matter if we are

running simple commands to interact with our local repository or doing more complex

collaborative online commands. All the exercises used in this book run in the context

of a repository, and all the work you will do in your day-to-day life does as well. There

are two common ways of starting work in a repository. We can either use the command

git init to initialize a new local repository without any history and start our work there.

This can even be done in a folder with content that is not under version control yet. More

commonly, we use the command git clone to obtain a copy of a repository. The source

of a repository is most often a private (i.e., Bitbucket on premises) or public (i.e., GitHub

cloud) repository manager. If we are using the clone command, we often call it cloning a

repository, and we call the local instance of the repository a clone.

The local repository is tied to the source by a configuration called the remote. Unless

you are working with open source software, you are unlikely to work with more than a

single remote. Open source software is often developed with a so-called “fork-based”

workflow that we will cover in a later chapter. Collaboration is generally done by pushing

and pulling changes between local and remote repositories. How that is done will be

covered later.

In short, a repository is the totality of the history of a software project. That is all

committed together with metadata. A repository allows you to work with version control

locally and collaborate with others through remote repositories.

Chapter 1 Git Intuition

5

Note  Some commercial software development works internally using fork-based
workflows. This can happen because of different trust levels or low maturity in the
software engineering department. It is my opinion that fork-based workflows are
an antipattern, or at best a workaround in that situation. Google-based research
showed that a key factor in perceived developer productivity is the visibility and
availability of source code also from outside the team.

�The Commit
The base unit of Git is the commit. Intuitively, a Git commit represents the full state of

the workspace at a given point in time. A commit also contains the following metadata:

•	 What commit(s) came before it

•	 The author and committer

•	 A timestamp

•	 A commit message, with information on the content of the commit

Caution N ew commits are never created without reason. Their creation is
initiated by the user. This can give cause to some frustration for new users, who
do not understand why they do not see their changes in shared repositories. What
often happens is that the user tries to share all their new code, but without having
created a new commit, the shared repository is already up to date without the
newest changes. Make sure you commit, before sharing.

The previous commit is called the parent. We can see that we create a graph of

commits, tied together through the parent pointers in commits. Commits can have zero,

one, or many parents.

The most common scenario is commits with one parent. This happens when we are

moving along a single strain or chain – creating one version after another.

Chapter 1 Git Intuition

6

The very first commit in a repository is special as it has zero parents. This makes

sense as nothing comes before the first commit. The first commit is also often referred to

as the initial commit. Many repositories’ first commit has the message “Initial Commit”

indicating it as the start of the versioned history. If we see large first commits, this is often

a sign that the developers did too much work before considering version control. This is

bad as version control should never be an afterthought. But you are here, so you will of

course never again end up in this situation.

A commit can also have an arbitrarily large number of parents. A commit ends

up with more than one parent when branches are merged. We will cover that later, so

don’t worry about that now. I say that commits can have an arbitrarily large number of

parents, and this is true. The Linux kernel is a fun place to go to see Git used to its limits.

Linus Torvalds, the inventor of Linux and Git, has a notorious fondness for the octopus

merge where many branches are merged in one fell swoop. This workflow obviously

works for the Linux kernel and other open source projects, but my recommendation is

that if you end up in a situation where you are merging more than two branches, you are

likely doing it wrong.

In short, a Git commit is a bundle representing a workspace that we can retrieve and

investigate at any point in time, at lightning speed.

�The Branch and the Tag
Git has two types of things, objects and references. The commits that we have described

earlier are immutable and in the category called objects. The other category of useful

things is called references and is much more lightweight.

At this point, I will introduce two types of references, branches and tags. Both point

at specific commits in the graph that we build using commits as described earlier.

�The Tag

The tag is the simplest reference in Git. It is simply a pointer to a commit. A commit use

for tags is marking the commits that were released with a tag named after the concrete

version.

In Figure 1-3, we see a commit with a tag; this allows us to reference to this commit

without using its sha.

Chapter 1 Git Intuition

7

A tag is never changing. That means that we at any time can back to a commit

through a name. It is much easier to understand what is going on when discussing what

happened in “V1.0” rather than a long sha.

�The Branch

In my experience, branches both give cause to great power and much frustration for

developers. There is no reason for this frustration though. It is often the mental model

that is lacking from simply using Git without proper education. Visualizing the Git graph

and branches is a power move that is available to all.

A branch is like a tag except that a branch is supposed to move. As we do

development and create commits, the currently active branch moves along and points to

the new commits that we create. The currently active branch is also said to be the branch

that we have checked out.

Note  While it is not strictly necessary to have a branch checked out, it is
considered best practice to do so, and I’d argue that in all cases during normal
development, you are going to have a branch checked out. When you have
checked something other than a branch out, you will end up in the so-called
detached head state, which sounds more dangerous than it is. We will later cover
both how to end up in this state and how to safely recover.

Figure 1-3.  A tag is pointing to commit <SHA>

Chapter 1 Git Intuition

8

Branches are extremely lightweight in Git. They weigh in at no more than 41 bytes.

These bytes represent a commit sha and a newline. This means that the primary cost of

having many branches is not a technological one, but rather it is limited by the cognitive

overhead imposed on engineers by having many pointers in our Git repository.

In Figure 1-4, we can see how the currently active branch moves along as we create

multiple commits. We will cover how Git knows what the currently active branch is, in

Chapter 4.

Figure 1-4.  A Git branch moves as more commits are created

Chapter 1 Git Intuition

9

Git uses a branch named master as its default. This means that we expect the master

branch to be the main source of truth and the most important branch. In other version

control systems, this could be called Trunk or Mainline. There are a few conventions that

expect the default branch to be named master, and I highly recommend that you do not

name your single source of truth branch to something other than master. Do so at your

own peril. It is highly unlikely to solve any real problems.

In Git, we can have many branches, but it is recommended that we have a low

amount of long-lived or permanent branches. In my experience, the need for anything

more than one permanent branch is artificial and construed. Having many branches

often causes too complex workflows to arise, generating overhead in the development

process. Complex workflows are often introduced to create higher-quality, safer

integrations, and other things of that ilk, but often, they are at best treating symptoms of

deeper problems with the way of working in the software.

�Setting Up Git and the Git Katas
Now that we have introduced the foundational vocabulary, we are going to make

sure that everything is set up. Then, we can dive in and get our hands dirty on actual

Git repositories and do some deliberate practice there. I tend to put everything in Git

repositories, so you will not be surprised to learn that the exercises that we are going to

be using in this book are delivered to you as a Git repository.

That is why we will be introducing our first command now. As mentioned before,

Git is a distributed version control system. In your day-to-day life, you are very likely

to collaborate on a repository that is hosted in the cloud or on premise on one of the

many repository managers. We use the Git clone command to obtain a local copy of the

repository to do our work in.

�Git Clone
A clone is a two-step command: first, it downloads the Git repository, and then, it checks

out the most recent commit on the default branch of the repository into the workspace.

First off, this enables you to change files, compile code, and run tests – all the

tasks that you commonly perform in a workspace with source code. Secondly, as you

download the entire repository during the clone, you can compare different revisions of

the code and do all possible version control commands, at local speed in your repository.

Chapter 1 Git Intuition

10

There are many variants of the clone command, but in its basic form, it looks like

this: git clone <remote-repository> <local-path>. An example of this is git clone

https://github.com/eficode-academy/git-katas.git git-katas. This will download

the repository containing the git katas into the folder git-katas/.git/ and check out

the workspace of the newest commit on the master branch into the folder git-katas.

�The .git Folder

One of my goals with this book is to take the magic out of Git and turn it into an awesome

tool that you can wield. A part of Git than many find vexing is the .git folder. But while it

feels like a magical folder that shows up in your workspace, it is rather a source of sanity

in what can be an abstract world.

We will not dive into details on the many things that are in the .git folder, but for the

purpose of intuition, let it suffice that it, among other things, contains

•	 The entire history of the repository, including data

•	 Local configuration

•	 Pointer to what is currently checked out

•	 Pointer to the origin that was cloned from

This is by no means a complete list, but it underlines one very important point: when

you clone a repository, you get the entire repository on your local computer. There are

ways to get a smaller subset of a repository, but assume that you get the full repository

and that it will not be a cause of performance issues or unnecessary space usage. Rather

it allows you to work offline, asynchronous, and at the speed of your local system.

With the clone command nicely introduced, we will go into the first exercise and

download the exercises that we will be using.

SETTING UP GIT AND THE KATAS

The time has come for the command line to come in place. I will be showing all commands

executed through Git Bash in Windows. This command-line environment is shipped with

the Git installed with Windows and is compatible with common shells on Linux and Mac, so

everything should be recognizable to you, no matter your platform of choice. Some users

report issues if using the zsh command line. If you experience this, please run the exercises in

bash.

Chapter 1 Git Intuition

11

Checking Git is working

First up, we are going to open a command line and run the git --version command to

check everything is working as expected.

•	 Open your favorite command prompt.

•	 Execute at any location the command git --version.

•	 You should see the version of Git that you are running being output in the

command line.

The expected outcome should be as the following snippet:

$ git --version

git version 2.25.0.windows.1

What we get is the installed version of Git. In my case, it is version 2.25.0.windows.1. This

is the newest version of Git at the time of writing. I recommend you update to this version.

There are many good things both performance and UX wise being released in Git. So keep up

with the versions.

Retrieving the Git katas

The exercises that we are going to use to practice the concepts we are introducing is called

the Git katas and can be obtained through GitHub.

This exercise will take you through the process of cloning the Git katas repository and

checking that you have the entire set of exercises present, before we dive into concrete

exercises using Git. If you do not feel comfortable with basic shell commands, now would be

an opportune moment to read on on those.

	1.	 Start a command line: Open a terminal of your liking and prepare to execute

commands in it.

	2.	N avigate to the location where you prefer to store your source code. I prefer to

store my files in ~/repos/organization/repo.

Chapter 1 Git Intuition

12

	3.	 Clone the Git katas using the clone command:

git clone https://github.com/eficode-academy/git-katas.git

git-katas

	4.	 cd to the git-katas folder and use ls to see the list of exercises.

If I run through the aforementioned commands, it looks like as follows:

$ cd ~/repos/randomsort

$ git clone https://github.com/eficode-academy/git-katas.git git-katas

Cloning into 'git-katas'...

remote: Enumerating objects: 34, done.

remote: Counting objects: 100% (34/34), done.

remote: Compressing objects: 100% (31/31), done.

remote: Total 1690 (delta 16), reused 7 (delta 3), pack-reused 1656

Receiving objects: 100% (1690/1690), 486.60 KiB | 1.72 MiB/s, done.

Resolving deltas: 100% (708/708), done.

$ cd git-katas

$ ls

3-way-merge/ basic-staging/ ff-merge/

merge-driver/ rebase-interactive-autosquash/ test.ps1

advanced-rebase-interactive/ basic-stashing/ git-attributes/

merge-mergesort/ reorder-the-history/ test.sh

amend/ bisect/ git-tag/

objects/ reset/ utils/

bad-commit/ commit-on-wrong-branch/

ignore/ Overview.md reverted-merge/

basic-branching/ commit-on-wrong-branch-2/

images/ pre-push/ save-my-commit/

basic-cleaning/ configure-git/

investigation/ README.md SHELL-BASICS.md

basic-commits/ detached-head/ LICENSE.txt

rebase-branch/ squashing/

basic-revert/ docs/ merge-conflict/

rebase-exec/ submodules/

$

Chapter 1 Git Intuition

13

There is a lot going on in this tiny example. First off, we get a lot of output from the clone

command, but luckily, we can ignore it, unless we are trying to debug something. Secondly,

there are two things that we can leave out and that most people commonly ignore. We can

often ignore the .git part of the remote repository and have Git and the repository manager sort

that out. Many people ignore the last part of the command. This will clone the repository into a

folder that has the name of the repository, here shown by example:

$ git clone https://github.com/eficode-academy/git-katas

Cloning into 'git-katas'...

remote: Enumerating objects: 34, done.

remote: Counting objects: 100% (34/34), done.

remote: Compressing objects: 100% (31/31), done.

remote: Total 1690 (delta 16), reused 7 (delta 3), pack-reused 1656

Receiving objects: 100% (1690/1690), 486.60 KiB | 1.72 MiB/s, done.

Resolving deltas: 100% (708/708), done.

$ ls git-katas

3-way-merge/ basic-staging/ ff-merge/

merge-driver/ rebase-interactive-autosquash/ test.ps1

advanced-rebase-interactive/ basic-stashing/ git-attributes/

merge-mergesort/ reorder-the-history/ test.sh

amend/ bisect/ git-tag/

objects/ reset/ utils/

bad-commit/ commit-on-wrong-branch/

ignore/ Overview.md reverted-merge/

basic-branching/ commit-on-wrong-branch-2/

images/ pre-push/ save-my-commit/

basic-cleaning/ configure-git/

investigation/ README.md SHELL-BASICS.md

basic-commits/ detached-head/ LICENSE.txt

rebase-branch/ squashing/

basic-revert/ docs/ merge-conflict/

rebase-exec/ submodules/

As you can see in the preceding data in most cases, this is enough to obtain the desired

outcome. That reduces the command we need to remember to git clone <repository>.

Troubleshooting: If you are typing the clone command and get a “permission denied” error, it might

be because you have misspelled the URL. Try copy pasting the command, and see if it works.

Chapter 1 Git Intuition

14

Now that you have been through the first of our exercises, you have made sure that

you have Git installed and working, and you also have the Git katas downloaded so we

can use them for the rest of the book.

�Getting Our Bearings in a Repository
Now, we come to the important part: working in a Git repository.

In this part, we will be using a few Git commands to look around inside of a

repository and a few shell commands to navigate the workspace as we interact with Git.

We will be introducing the commands: status, log, and checkout.

We will cover status in depth, but log and checkout are both big commands that we

will introduce gradually over the course of the book.

�Git Status
When I teach Git, I always tell my students: “If you are in doubt of what is going or, or

what you are supposed to do, just run git status and Git will tell you.” While this is a

slight exaggeration, all inquiries should start with a git status.

Git status tells you about the state of your workspace and how it compares to

what is currently checked out. If the workspace is identical to what is checked out,

the workspace is said to be clean. If the workspace contains changes, of any sort, the

workspace is said to be dirty. Changes can be modified, deleted, added, or renamed

files. Git also has a notion of ignored paths, and from the perspective of Git, changes in

ignored paths do not make the workspace dirty. How a file moves through these states is

shown in Figure 1-5.

Chapter 1 Git Intuition

15

�Git Log
As we are in the universe of version control, being able to look at what versions exist and

how they relate to each other is an essential feature. Git log is the most basic way we can

look at the history of our repository. While Git log is a basic command, it is also one of

the most configurable ones, and the number of flags and arguments can be intimidating.

Do not despair, I will guide you to use log confidently.

If you look in the following listing, you see a run of log without any commands

and flags, configured with the default Git 2.25 installation. In this repository, there are

only a few commits, on a single branch, and a single tag. Commits come in reverse

chronological order, meaning that the newest commit will be the one printed first and

then following the parent pointer of each commit until we reach the first commit.

Each commit contains a lot of information in this view. All the data here is printed

per commits, and this behavior is often too verbose for most uses. We can also see the

references and the commits they point to.

$ git log

commit 335e019ac148297bd938f137ea9c7cf617c07576 (HEAD -> master, origin/

master, origin/HEAD)

Author: Johan Sigfred Abildskov <randomsort@gmail.com>

Date: Thu Feb 13 11:10:55 2020 +0100

Figure 1-5.  The different states a file can be in and the actions that transition
between them

Chapter 1 Git Intuition

16

 Clean up unused trainer-notes.md

commit c1514f22ebb31280d26b3062134a7066c59df737

Author: Alex Blanc <test@example.com>

Date: Sat Oct 19 17:38:32 2019 +0200

 Add kata Rebase Interactive with autosquash

commit 032a8fcdef22a53f123f914a8b7b2d7d87cdd2e7

Author: Johan Abildskov <randomsort@gmail.com>

Date: Mon Feb 10 14:35:27 2020 +0100

 Fix typos in submodule README

As mentioned earlier, the verbosity of the log command is not very useful

for getting an overview, so over the next few listings, we will configure our log command

to become more succinct. First, we will use the flag --oneline to the same log command

as earlier, to get a more condensed view of the log. The entire command becomes

git log --oneline, and the resulting output can be seen in the following listing (next

listing!). The oneline flag truncates the commit message to only the subject and the sha

to a shorter prefix. This makes it a lot easier to get an overview.

$ git log --oneline

335e019 (HEAD -> master, origin/master, origin/HEAD) Clean up unused

trainer-notes.md

c1514f2 Add kata Rebase Interactive with autosquash

032a8fc Fix typos in submodule README

262c478 Fix three typos

1e07423 Expand on submodules kata

1ef8902 Use explicit numbering

dbfccc8 Added pointer to Overview also as Learning Path

1848caf Reordered katas on Overview and added missing ones

If we are missing the references from the preceding view, it can be due to an

outdated version of Git. In that case, we can use the flag --decorate to have Git

annotate the commits with the relevant pointers. Our command then becomes

git log --oneline --decorate. In newer versions of Git, decorate is the

default --oneline behavior. An example of how it would look like with an older

version of Git can be simulated using the flag --no-decoration.

Chapter 1 Git Intuition

17

$ git log --oneline

335e019 Clean up unused trainer-notes.md

c1514f2 Add kata Rebase Interactive with autosquash

032a8fc Fix typos in submodule README

262c478 Fix three typos

1e07423 Expand on submodules kata

1ef8902 Use explicit numbering

dbfccc8 Added pointer to Overview also as Learning Path

1848caf Reordered katas on Overview and added missing ones

As long as we are only using one branch and thus have a linear history with no

divergent threads of development, this should be enough for our use. When we look into

more complex histories in Chapter 3, we will add some more tools to our log command.

There is however one flag that is tremendously useful for restricting the number of

commits that we get in the log output. We can use the flag -n <number> to limit the

number of entries in the log output to <number>. For small numbers, we can use the

literal number as the flag. For example, git log -3 will only output three commits. In

Listing 6 we run with the flags --oneline, --decorate, and -n 2.

335e019 (HEAD -> master, origin/master, origin/HEAD) Clean up unused

trainer-notes.md

c1514f2 Add kata Rebase Interactive with autosquash

Note  You can use gitk instead of git log to get a prettier GUI-based output.
Some prefer this, and few know they can get this nice overview without using a
full-fledged GUI Git client like Sourcetree or Git kraken. You can use gitk without
arguments like so: gitk.

�Summary
In this chapter, we introduced the basic problem space that we are working with, namely,

maintaining and relating multiple versions of a collection of files and directories. We also

made sure that Git was installed and downloaded the Git katas using the command git

clone. Then, we briefly looked at the history of a tiny repository using git log.

Chapter 1 Git Intuition

19
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_2

CHAPTER 2

Building Commits
In this chapter, we will cover commits in detail. Commits are the basic building blocks of

our history, both containing the actual content of our versions and the parent pointers

that define our history. Deliberately fashioning commits and attaching well-formed

commit messages to them are foundational skills needed to be a valuable individual

contributor in a collaborative setting.

�What’s in a Workspace
At its core, Git is about files and directories. In software development, the place where

we store project-specific files with our code is commonly called the workspace. When I

refer to our workspace, I refer to the root folder of our project, containing the files and

directories that constitute the project, and also the .git folder. In the following snippet,

we see a directory listing both in shell and in Windows Explorer. Notice how the .git

folder containing the Git repository is hidden. It is a common convention to have files

and folders that start with a . be hidden.

$ ls

images/ index.js library.js README.md

As mentioned, our workspace can be either dirty or clean, when compared to the

currently checked-out commit on the repository. Dirty is not a bad word; it simply

implies different. This difference is of course a good thing because those are the changes

that we have made, but just have not committed yet. Another source that can make our

workspace dirty is autogenerated files and build artifacts. We will later cover how we can

make Git ignore certain paths.

We can look at our workspace as always being represented by a commit and a

changeset or diff applied on top of that. Figure 2-1 shows how the objects are identical in

a clean workspace and the repository.

https://doi.org/10.1007/978-1-4842-6270-2_2#DOI

20

As the contents of the workspace and the repository are identical, the workspace

is considered clean. In Figure 2-2, we can see how a dirty workspace relates to the

repository when we change the file A.

Figure 2-1.  A clean workspace on top of a repository

Figure 2-2.  A dirty workspace after changing file A on top of the repository

Chapter 2 Building Commits

21

We can see this using the Git status command. As we change files in the repository

and run the git status command, we can see how Git tells us that files become modified

or deleted for files that are already tracked by Git, or how files that we add to our

workspace for the first time show up in Git status as untracked.

$ ls

A B C D

$ git status

On branch master

nothing to commit, working tree clean

$ echo testing > A

$ git status

On branch master

nothing to commit, working tree clean

$ git add A

$ git status

On branch master

nothing to commit, working tree clean

$ git commit -m 'Edit A'

On branch master

nothing to commit, working tree clean

$ git status

On branch master

nothing to commit, working tree clean

$ rm B

$ git status

On branch master

Changes not staged for commit:

 (use "git add/rm <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 deleted: B

no changes added to commit (use "git add" and/or "git commit -a")

$ git commit -am 'Remove B'

[master db1f9c6] Remove B

 1 file changed, 0 insertions(+), 0 deletions(-)

Chapter 2 Building Commits

22

 delete mode 100644 B

$ git status

On branch master

nothing to commit, working tree clean

$ touch D

$ git status

On branch master

nothing to commit, working tree clean

$ git add D

$ git status

On branch master

nothing to commit, working tree clean

$ git commit -m 'Add D'

On branch master

nothing to commit, working tree clean

$ git status

On branch master

nothing to commit, working tree clean

�Preparing Commits Using the Stage
In Git, files can be represented in three different locations, of which we have covered

two so far: the workspace and the repository. There is a third one that lies between the

two – that area is called the index or the stage. The logic of this stage is that it is the place

where we fashion what will go into the commit that we make next. The flow of work goes

as follows: We make some changes, we stage the changes that we want to be a part of the

next commit, and finally we make a commit. Rinse and repeat. This flow can be seen in

Figure 2-3.

Chapter 2 Building Commits

23

This flow is a simplified view of normal software development flow, but hopefully,

it is recognizable. The best intuitive description of the stage I’ve ever heard is that we

imagine we are the photographer at a family reunion, and we are instructing people

on who should go on the next picture, and when we are done with that, we take the

photograph. Then, we repeat. In a similar fashion, we use the command add to add a

path to the stage. This action is also called staging a file.

Note  When we stage a file or directory, we do not stage simply a path that we
tell Git to include in the next commit. We stage the content at the point when we
run the git add command. This means that if we change a file after staging it,
we need to stage it again, to include it in the next commit.

As we saw in Figure 2-3, a file can be in a few different states from the perspective of

Git. The following list omits only a final state that we will cover later in this chapter:

•	 Unmodified: This file is identical in the workspace and in currently

checked-out commit in the repository.

•	 Modified: This file is present in both workspace and repository, but is

different.

•	 Staged: This file is in the workspace, current commit, and stage. Note

that the file can be different in all three locations.

•	 Untracked: This file is in the workspace, but not in the current commit.

Figure 2-3.  Flow inside a local repository

Chapter 2 Building Commits

24

MANIPULATING THE STAGE

In this exercise, we will go through some steps to manipulate the stage and what happens as

we change, stage, and unstage files.

First, let’s see how things are in our repository using our basic toolkit of investigative

commands.

First, we run the command pwd to see the path we are in and then ls to see what the directory

contains.

$ pwd

/c/Users/rando/repos/randomsort/practical-git/chapter2/stage-repo

$ ls

file1.txt subfolder/

$ ls -al

total 9

drwxr-xr-x 1 rando 197609 0 mar 13 12:18 ./

drwxr-xr-x 1 rando 197609 0 mar 13 12:18 ../

drwxr-xr-x 1 rando 197609 0 mar 13 12:19 .git/

-rw-r--r-- 1 rando 197609 14 mar 13 12:18 file1.txt

drwxr-xr-x 1 rando 197609 0 mar 13 12:18 subfolder/

Notice how the .git folder does not show until we use the flag -a. This is because ls by default

does not show hidden folders, and as mentioned, the convention is that files and folders

starting with a period (.) are considered hidden. Other than that, we can see that we have a

few files and a single directory.

Now that we have gotten the basic outlook on the file system, we use a few basic git

commands to get a hold on the repository. We use git status to ask Git about the state of our

workspace compared to our repository. We get more information that we will ignore until a

later chapter.

$ git status

On branch master

nothing to commit, working tree clean

$ git log --oneline --decorate

1cc4f2e (HEAD -> master) Initial commit

Chapter 2 Building Commits

25

What we get from git status is first off the confirmation that we are indeed working inside a Git

repository. We also learn that our workspace is clean and nothing is staged. From git log, we

learn that we have a repository with a very brief history.

In the following steps, we will make changes to the workspace and stage files along the way.

We will continuously use Git status to see how our actions are reflected in the states of the

files. Remember we start with a clean workspace.

$ echo "test" > file1.txt

$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

no changes added to commit (use "git add" and/or "git commit -a")

$ git add file1.txt

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file1.txt

$ echo thing > file1.txt

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file1.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

$ echo content > file_that_did_not_exist_before.txt

Chapter 2 Building Commits

26

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file1.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 file_that_did_not_exist_before.txt

$ git add file

file_that_did_not_exist_before.txt file1.txt

$ git add file

file_that_did_not_exist_before.txt file1.txt

$ git add file_that_did_not_exist_before.txt

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file1.txt

 new file: file_that_did_not_exist_before.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

$ echo content > subfolder/subfile1.txt

$ echo content > subfolder/subfile2.txt

Chapter 2 Building Commits

27

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file1.txt

 new file: file_that_did_not_exist_before.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 subfolder/subfile1.txt

 subfolder/subfile2.txt

$ git add subfolder/

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 modified: file1.txt

 new file: file_that_did_not_exist_before.txt

 new file: subfolder/subfile1.txt

 new file: subfolder/subfile2.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

$ git restore --staged file1.txt

$ git status

On branch master

Changes to be committed:

Chapter 2 Building Commits

28

 (use "git restore --staged <file>..." to unstage)

 new file: file_that_did_not_exist_before.txt

 new file: subfolder/subfile1.txt

 new file: subfolder/subfile2.txt

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

$ git commit -m "our first commit"

[master de09faa] our first commit

 3 files changed, 3 insertions(+)

 create mode 100644 file_that_did_not_exist_before.txt

 create mode 100644 subfolder/subfile1.txt

 create mode 100644 subfolder/subfile2.txt

$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working directory)

 modified: file1.txt

no changes added to commit (use "git add" and/or "git commit -a")

$ git log --oneline --decorate

de09faa (HEAD -> master) our first commit

1cc4f2e Initial commit

In the preceding list, we see a few noteworthy items.

•	 When we change the file1.txt after we have staged it, it becomes both modified

and staged.

•	 We can have both modified and added files in the same stage.

•	 When we stage a directory, all subpaths are staged.

•	 We can undo the staging of a path using git restore --staged <path>.

Chapter 2 Building Commits

29

�Committing
In the previous section, we spent a lot of energy discussing how we could control what

would be part of our commits. In this section, we will cover how we do the actual

persisting where we persist the content of the stage into the repository in the bundle we

call a commit.

�Git Commit
To create commits, we use the command git commit. Figure 2-4 shows the different

steps of the commit flow. It assumes we have added some changes to the stage. What

then happens is the message passed with the command-line flag -m and the changeset

and some automatically generated content is persisted in the commit object. Afterward,

the currently checked-out branch is updated to point to this newly created commit.

Chapter 2 Building Commits

30

Fi
gu

re
 2

-4
. 

T
hi

s
is

 w
ha

t h
ap

pe
n

s
w

he
n

 w
e

ru
n

 th
e

co
m

m
an

d
gi
t
co
mm
it

 a
ss

u
m

in
g

fi
le

s
ar

e
st

ag
ed

Chapter 2 Building Commits

31

As mentioned before, we actively control two parts of the commit, while the rest is

handled automatically by Git. We defined what the file content will be of the commit

using the stage, while we control what message will be attached to the commit when we

create the commit.

The most common way of specifying the commit message is using the flag -m and

passing the commit message directly in the command. This method has the advantage

that the commit message is likely to be short and concise, and we do not have an extra

step in the process of creating a commit. There are several disadvantages to this; we will

cover these a bit later when we discuss what constitutes a good commit message. The

most basic commit flow looks like as follows in the command line:

$ git add file.txt

$ git commit -m “Add file.txt”

$ git log

commit 2a99799c0b9727dc22ae8a790d3978ac40273960 (HEAD -> master)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Fri Mar 13 13:17:41 2020 +0100

What we see in the preceding example is the changeset we add to the stage becomes a

part of the next commit we create using the git commit command. The message we pass

as an argument is shown in the log. This is useful as we can give a title to each commit,

given a reason for a changeset. Many developers also use the message to reference an

external issue, maintained in a tool like Jira, GitLab, or Azure DevOps Boards.

If we leave out the -m flag from the commit command, Git will open a text editor in

which you can fashion a commit message. This also opens up for using both the subject

and body of the commit message. In most corporations, only the subject is used, as

additional information is persisted outside of version control. In these situations, put any

issue references in the body and leaving them out of the subject. This allows for a cleaner

commit header that concisely describes the changes that any Git commit introduces.

Chapter 2 Building Commits

32

In open source workflows, the commit message body is more commonly used to

add more documentation on changesets. This information should not duplicate what

is written in proper documentation such as READMEs, generated documentation, user

instruction, or similar. Rather, it should contain supplementary information relevant

for the concrete changeset. The following bullet list is some examples on what could be

covered in such documentation:

•	 The reasoning for introducing this changeset

•	 Any architectural decisions

•	 Design choices

•	 Trade-offs that are not necessarily obvious in the code

•	 Descriptions of alternative solutions that could be considered

•	 A slightly more verbose description of the content of the changeset

In Listing 2-1, I’ve grabbed a commit message out of the Git core source code

repository. This shows an example of a commit message using both the subject and body

of the commit message.

Listing 2-1.  An example commit message with the subject giving a high-level

description of the feature and the body verbosely listing the content

mm, treewide: rename kzfree() to kfree_sensitive()

As said by Linus:

A symmetric naming is only helpful if it implies symmetries in use.

Otherwise it’s actively misleading.

In “kzalloc()”, the z is meaningful and an important part of what the

caller wants.

In “kzfree()”, the z is actively detrimental, because maybe in the

future we really _might_ want to use that “memfill(0xdeadbeef)” or

something. The “zero” part of the interface isn’t even _relevant_.

The main reason that kzfree() exists is to clear sensitive information

that should not be leaked to other future users of the same memory

objects.

Chapter 2 Building Commits

33

In the preceding code, we saw how it can look when we both have a subject and a body

in a commit message – in the following code, I will show how it looks when we go through

the steps to create a commit without specifying a commit message in the command line.

$ git commit

hint: Waiting for your editor to close the file...

[master 1a41582] Commit message from editor

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 file2

$ git log -n 1

commit 1a41582591bedad5757914acf3fc8be562e468a4 (HEAD -> master)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Fri Mar 13 13:19:57 2020 +0100

 Commit message from editor

 This part of the message is written as a part of the message body.

 Notice that there is a newline between the header and the subject.

But one step is missing from the previous code that is hard to show in a book.

Figure 2-5 shows a screenshot of the editor Git opens on my system with a prepopulated

commit message, which we can change to our liking. Note that if there are only empty lines

and comments when we save and quit the editor, the commit process will be aborted.

Figure 2-5.  The default view on a commit message editor when no message is
specified in the command line

Chapter 2 Building Commits

34

Out of the box, Git will default to whatever editor your shell is using, defined in

the environment variables EDITOR or VISUAL. If Git cannot determine which editor

to use, it will fall back to vi, to the dismay of many Windows users. The previously

described behavior can be overridden with the configuration core.editor. We will cover

configuration later, but be aware that you have the option to choose your favorite editor.

It is not necessarily all editors that support being used in this way, or can run by Git

without being started with specific configuration. Most commonly used editors are

compatible or can be easily configured to work as it should. It is no further away than a

Google search that leads to Stack Overflow.

�Good, Bad, and UGLY Commit Messages

As we’ve mentioned earlier, commits are immutable. That also means that commit

messages are permanent, and thus it is important to invest some amount of thought in

writing them to maximize the value of the message to our collaborators and future self.

There is a saying that one of the hard problems in computer science is naming things.

I think we can lump in writing commit messages. It is difficult but important.

In this section, we will cover some ground rules for writing good commit messages,

some things to avoid, and give examples on both good and bad commit messages.

Before diving into the details, I want to stress that a key factor for useful commit

messages is consistency across collaborators in a repository. In my opinion, it is much

more important that commit messages have the same semantics and look the same than

they are objectively written optimally. It is powerful to be able to skim a list of commits

and be able to get a feeling of the life that is going on in the repository. Some also add

integrations to their IDEs that decorate each code line with the commit message subject

of the commit that most recently changed that code line. This way of working is much

more powerful if commit messages have the same basic shape. The Git feature we

are using for this is not very sensitively called git blame. It allows us to point fingers at

whoever caused a particular change. While this is useful, the connotations on the word

blame are not very constructive or conducive of a healthy culture. We will cover git

blame at a later point.

Chapter 2 Building Commits

35

The Subject or Header

As can be seen in Figure 2-6, the commit message subject has a prominent position,

no matter where you look at it. In the log, it is what we associate with a commit; it is

what shows the pulse of our code base through the events they describe. In a repository

manager, commonly the files and directories shown are annotated with the commits that

last changed them. Some even add these commit messages on a line-per-line basis in

their editors. This can, for example, be done using Git lens in Visual Studio Code.

Figure 2-6.  Commit message headers presented through the GitHub interface

When most people discuss commit messages, they are simply referring to the

subject. There are a few categories of good commit messages, and as mentioned before,

it is important that the individual contributors to the code base are aligned on the

strategy.

Chapter 2 Building Commits

36

The first strategy that I will cover is simply describing at a high level what has

changed in a commit. In my opinion, this should not be describing an implementation

detail. Thus, a good commit message could be “Enable separate debug and info

logging” or “Move checkout functionality to separate class”, while a bad would be “Move

checkout() from app.js to checkout.js”. My point is that I should be able to get more

information than simply the diff from the commit header.

A second style is to describe what will happen if you apply this commit. This can

be used successfully in open source projects or on-site where developers contribute

to many modules, perhaps some outside of their core responsibilities. Using these

semantics also gives a good indication of the intent of the commit and the delivery

shape. Language and communication shape the way we work, so this is also a powerful

way to help build consistent workflows. Good commit messages like this could be “ADD

randomized retries” or “UPDATE prices to 2020 models”. Bad examples of this could be

“REMOVE unneeded files” or “Add JIRA-1234”.

As mentioned previously, many organizations also use the commit header to

reference one or more issues. This is a topic that I have many opinions on, but I will try to

keep the ranting to a minimum and just introduce a few items to ponder. I am not against

referencing issues in a commit message, I think it raises traceability and in most cases is

a good practice. I am against using an issue reference in lieu of a proper, useful commit

message. I prefer issue references to be relegated to the body of the message rather than

take up the sparse space in the commit header. The commit header is one line so it is

a good practice to keep it shorter than 70 characters. If you have many commits that

reference the same issue, or need to reference multiple issues from the same commit,

you should reflect whether you have approached your work in a suboptimal way. Both of

these one-to-many relations are a workflow smell and indicate you are either trying to do

too much at one time, in the case of many issues in one commit, or are not doing basic

history hygiene before delivering your changeset to the common repository. There can of

course be all sorts of special scenarios, but in most cases, there should be a one-on-one

ratio of commits to issues within a single repository.

A new style has been introduced taking advantage of our more and more advance

terminals and emojis getting added to Unicode. Some use these emojis in their commit

messages to signal either intent or the type of change. This is sometimes called Gitmojis.

In Figure 2-7, you can see examples of both descriptions and usage of some of these.

Chapter 2 Building Commits

37

Using the Gitmojis might seem like nothing more than a gimmick, but if used

consistently and with thought, it can be a very efficient way of communicating. It takes

discipline to use effectively, though. Use the Gitmoji as the very first character in the

header if you are using them. Please limit the use of emojis in the commit messages. If

nothing else, then make sure that your use of emojis is consistent with the engineering

culture of the code base. Emojis that are used for flavor should be added at the end of the

commit message, such that they do not interfere with the messaging of the used Gitmoji.

Finally, there might be technical challenges depending on how current and customized

the tooling that interacts with the repository is. It is possible that either custom tooling or

outdated software might not be compatible with emojis in commit messages – or paths

for that matter.

The above are some different styles or strategies for writing good commit messages.

Which you choose can vary from project to project and from repository to repository.

Make sure that there is a high degree of consistency so a git log looks clean! I end this

section with a compiled list of bad commit messages that should serve as a warning of

how not to write commit messages. The list may or may not be based on actual commit

messages:

•	 Fix typo

•	 Dummy commit

•	 Fix CI (on a string of ten commits)

•	 Maybe this will work

•	 I don’t even know why I expletive deleted care anymore

•	 🚀🕷🕷🕷🎊

Figure 2-7.  Gitmojis used to concisely categorize changesets

Chapter 2 Building Commits

38

What should go into the body of a commit message is very project dependent, but

if nothing else, I recommend that this is where you put your commit messages – even

if this comes in the way of you using the short -m where you set the commit messages

directly in the command line. Getting a good-looking history is surely worth those extra

keystrokes. I will not cover the commit message body in any detail as there are too many

different approaches to cover here.

�Recovering from Oops Moments with amend
The command git commit has a flag called amend that allows us to edit the most recent

commit. When I say edit, it is a lie. We will cover what happens in more detail later, but

as mentioned, commits are immutable, so we don’t really edit a commit, we create a

new almost identical one, and point to that instead. The old commit does not disappear

immediately, but will be garbage collected after some time.

Figure 2-8 shows what happens when we do amend. A new commit is created and the

branch pointer updated.

Figure 2-8.  Amending a commit creates a new commit and updates pointers. It leaves
a dangling commit that will at some point be garbage collected. The new dangling
commit is shown in a faded outline, with the new commit in a full solid line

There are many scenarios where commit amend is useful. We might have forgot to

stage everything that we needed – or staged way too much. We could have written a

horrible commit message and immediately regret it. In the following segment, I run

through an example of commit and then adding a file to the commit. In the example, I

will run the command using -m to specify the message. If we leave the -m out, we will

get our $EDITOR opened prepopulated with the message from the commit that we are

amending.

Chapter 2 Building Commits

39

$ git log -n 2

commit 25cb0925de7cbc8c12803c6d51a7ddbc5f114509 (HEAD -> master)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sat Mar 14 13:13:59 2020 +0100

 Add Feature X

commit 67e7eef1a44f222a50207fc20b24477bd9e0ddd8

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sat Mar 14 13:12:34 2020 +0100

 Initial Commit

$ git add example.md

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: example.md

$ git commit –amend -m “ADD Feature X, with docs”

[master 8fb3eba] Add Feature X, with docs

 Date: Sat Mar 14 13:13:59 2020 +0100

 2 files changed, 2 insertions(+)

 create mode 100644 example.md

 create mode 100644 featurex.app

$ git log -n 2

commit 8fb3ebac82ac4940cf478746e04d73eb1882aa76 (HEAD -> master)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sat Mar 14 13:13:59 2020 +0100

 Add Feature X, with docs

commit 67e7eef1a44f222a50207fc20b24477bd9e0ddd8

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sat Mar 14 13:12:34 2020 +0100

 Initial Commit

Chapter 2 Building Commits

40

$ git status

On branch master

nothing to commit, working tree clean

As we can see from the preceding example, we can easily fix a common misstep.

While tinkering with the history and commits is generally considered bad practice, this is

only on items that are shared between people. So as long as we are working on commits

that are not shared, we should take the care to actively edit and fashion our history so it

provides as much value as possible for posterity.

�Getting Clean Commits with .gitignore
A common mistake for developers is to add too much into their commits. This could be

compiled files, logs, or other build artifacts. If we are building Python code, we would

never be interested in persisting the .pyc compiled Python files as part of our versioned

source code. Getting too much into our repositories can have a few unfortunate

outcomes.

First, it can degrade performance over time. Both doing the initial clone and getting

different commits into the workspace with checkout can become long-running tasks. As

Git is immutable and distributed, this can have a high price and be tough to fix later.

Second, it obfuscates the real changes and makes it more difficult to make commits

that have a well-defined boundary and obvious changeset. If a commit contains changes

on tens of thousands of files due to a bunch of changed build artifacts, it can be very

difficult to discern where the real logical change is buried.

Third, it enforces bad habits just adding all that has changed into the next commit.

As professional software workers, we must take care and ensure what we deliver is what

we intend to deliver. In that manner, simply adding what is present in our repository

does help us forming deliberate changeset.

Fortunately, Git comes with a solution that can help us avoid accidentally cluttering

up our repositories. Git comes with a feature that allows us to put paths into a file

called .gitignore, and files contained in here will be ignored when we stage items for

committing. This allows us to be more liberal when we stage content. Using git add

folder/ is much more efficient than individually staging files.

Chapter 2 Building Commits

41

A .gitignore file contains a list of patterns to be ignored. If you prefix a line with an

exclamation point, that pattern will be included, even if it previously has been ignored.

In the following figures, we will show what will be staged depending on the .gitignore file.

Listing 2-2 shows an example .gitignore file that will work well for Python projects.

Listing 2-2.  A basic .gitignore file that can be used for Python projects to avoid

cluttering the repository (generated from https://gitignore.io)

Created by www.gitignore.io/api/python

Edit at www.gitignore.io/?templates=python

Python

Byte-compiled / optimized / DLL files

__pycache__/

*.py[cod]

*$py.class

C extensions

*.so

Note  For example .gitignore files for most commonly used languages and
frameworks, you can go to gitignore.io and download a suitable one.

After adding a .gitignore file to our repository, we might still have some cleanup to

do. Just because we have ignored files does not remove already committed files from the

workspace. More importantly, it does not remove them from the history, so they still take

up space, even though they no longer clutter the workspace. How to handle this is an

entirely different and complex beast that we will attack later on.

In the following command-line snippet, you can see how adding a .gitignore file

changes the behavior of the add command:

$ ls

app.exe* example.md featurex.app file

$ git add .

$ git status

 $ git status

Chapter 2 Building Commits

https://gitignore.io

42

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: app.exe

$ git restore app.exe

$ git status

On branch master

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 app.exe

nothing added to commit but untracked files present (use "git add" to

track)

$ echo “*.exe” > .gitignore

$ git add .

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

As can be seen from the preceding sample, creating a .gitignore file helps keep our

repository from getting unnecessarily cluttered. We can also see that the .gitignore file is

simply a file, and changes to it will be tracked just like any other file changes.

�Advanced .gitignore
While the preceding example is quite nice and provides a lot of value, it is often not

enough. We tend to have more elaborate schemes for what is allowable inside of our

repository.

It is not uncommon to make schemes such as “We will not allow pngs in our

repository except for inside the folder images”. We can do such things with the git

ignore file.

Chapter 2 Building Commits

43

A git ignore file contains a list of patterns that are applied from top to bottom. We can

prefix lines with a ! to make them an inclusion rather than an exclusion.

Thus, to obtain the preceding scenario, we can use the following .gitignore file.

Note that lines inside the git ignore file that starts with a # are ignored.

Example .gitignore

Exclude all pngs

*.png

Include pngs in images/

!images/*.png

BUILDING A .GITIGNORE FILE

The following set of commands builds a git ignore file in the command line that will disallow

png files from being added to the repository, except if they are in the images folder.

First, we notice that there are two png files in the repository, one in the root and one in the

images folder. When we then add the root (.), both png files are staged.

$ ls

file.png images/ README.md

$ git add .

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: file.png

 new file: images/file.png

$ git restore .

$ git status

On branch master

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 file.png

 images/file.png

Chapter 2 Building Commits

44

nothing added to commit but untracked files present (use "git add" to track)

After having restored our stage to the state that is in the repository, we ignore png files

completely in our repository. When we then stage the root, no png files are staged.

$ echo *.png > .gitignore

$ git add .

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

$ git restore .

$ git status

On branch master

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 .gitignore

nothing added to commit but untracked files present (use "git add" to track)

Now that we’ve again restore to the basic state, we can add an exception to the preceding rule

using the ! as a prefix to the pattern. In this case, we allow pngs inside of the images folder.

$ echo !images/*.png >> .gitignore

$ git add .

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

 new file: images/file.png

This could also have been achieved with a separate .gitignore file inside of the images folder

containing only the line !*.png. This would have the effect to saying, in this folder and the

following png files are allowed no matter what the repository otherwise believes. Thus, we can

have an arbitrary amount of git ignore files placed around in our directory structure. As with

many other aspects of Git, this adds complexity, and we should be disciplined around adding

ignore files outside of the root.

Chapter 2 Building Commits

45

�Globbing git ignore

In shell languages, there is a concept of globbing, which is a kind of fuzzy wildcard

expansion. An * represents any single name. But we can also use the sequence ** to

represent arbitrary nesting. This allows us to say things like “We do not want png files

in our repository, unless they are in a folder called images, no matter where that folder

is”. This can be useful in a scenario where you would like to permit png files in the

repository, but you worry that people will accidentally add pngs that they have randomly

lying around. Saying pngs are allowed if they are put in a folder called images forces

developers to be more deliberate about adding pngs to the repository, while not being

overly restrictive.

The following examples start from the previous exercise and then open up for a few

more locations.

GLOB PATTERNS IN GIT IGNORE

This exercise assumes we have the same git ignore file that we closed the last exercise with,

that is, a git ignore file denying pngs except for the folder images/ in the root of the repository.

This means that we have a few different images folders that will not have their content

allowed.

We start from the setup we had in the last exercise and then add a wildcard pattern to the

gitignore file.

$ echo ‘!*/images/*.png’ >> .gitignore

$ git add .

$ git status

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

 new file: images/file.png

 new file: subfolder/images/file.png

$ git restore .

Chapter 2 Building Commits

46

We have now added a wildcard pattern that allows any subfolder to have pngs in a subfolder

called images. This allows us to more broadly let exceptions without doing everything on a

folder-by-folder level.

$ echo '!**/images/*.png' >> .gitignore

$ git add .

$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitignore

 new file: images/file.png

 new file: subfolder/images/file.png

 new file: subfolder/subfolder/images/file.png

We have now added an even broader pattern stating that as long as pngs are in a folder called

images/, it doesn’t matter how far down the directory tree this happens. This clause is more

broad than the first in this exercise, so we can go back and delete the line !*/images/*.png

from the Git ignore file as this is covered by the line just added.

The preceding examples show very concretely how we can create elaborate schemes

that will give us fine-grained control over what goes into the repository. It also shows that

it quickly can become complex, even with such a simple example as the one earlier.

I highly recommend against creating too complex gitignore files, they can quickly

become seemingly magical, and it stops being obvious to the developer what is going on

when they are using their version control system. This is of course to be avoided if possible.

�Git Katas
In order to support the learning goals of this chapter best, I recommend that you go

through the following Git katas:

•	 basic-commits

•	 basic-staging

•	 amend

•	 ignore

Chapter 2 Building Commits

47

�Summary
In this chapter, we have covered the stage and how we can use that to create beautiful

atomic commits. We have also discussed commit messages and how to write them

well. More importantly, we discussed a few different strategies for how to decide what

patterns you want your commit messages to follow. We touched on the simplest way of

redoing a commit, using amend. Finally, we discussed how we can use the Git ignore file

to avoid unintentional files in our repository. Armed with this knowledge, we are ready

to venture forth and create a long history of perfect commits.

Chapter 2 Building Commits

49
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_3

CHAPTER 3

Linear History
Git is famously known for its lightweight branches. They are highly performant both

in terms of creation and merging. They are also relatively simple to use as a developer.

Anyone who has been in a seemingly unresolvable merge conflict will contest this

statement.

In short, branches are how we manage our source code life cycle, how we manage

different versions of our code base, and how we isolate our changesets to facilitate

atomic changes and collaboration.

Branches can seem a bit complex, but I will do my best to give you the right

vocabulary and mental model to be able to wield branches with ease.

In this chapter, we are going to cover a linear history, that is, repositories with an

unbroken, single-string chain of commits. First, we will cover the basic building blocks

for Git’s branching model. Then, we will show how they interact in a visual way and

round off with how this comes to fruition through tasks in a Git repository.

�Branching Foundations
When we think of branches, two things spring into mind. One is divergence. It even

shows in natural language. “The road branched” refers to a road splitting into multiple

directions. Secondly, our intuition of a branch is something that has some length –

not just a single point. In terms of version control, we would then expect that we have

branches when we have separate chains of commits. This intuition is the root of much

confusion when people learn Git. In Figure 3-1, we can see how these concepts map into

a drawing of an actual tree.

https://doi.org/10.1007/978-1-4842-6270-2_3#DOI

50

In Git, a branch is nothing more than a reference to a single commit. This is the

single most important statement in this book, so I will repeat it. In Git, a branch is

nothing more than a reference to a single commit. This means that when we mention

a branch of our source code, we usually refer to the newest commit on that branch and

the commits that precede it. But technically, the branch is simply pointing to the newest

commit, and the rest of the commits “on the branch” are derived by following the parent

pointer from this commit. This also means that there is not necessarily any divergence

needed for branches to exist. We can have two branches that point to the same commit

and thus two branches that are identical without any divergence.

This layout is shown in Figure 3-2. We have a string of commits and three branches

pointing into this string of commits. Branches A and B point to the same commit, while

branch C points to a different commit. Note that while C is different from A and B, there

is no divergence. C is simply a prefix of A and B. This will become important later when

we talk about merges.

Figure 3-1.  Our intuition is shown; that branches have lengths and represent
points of divergence

Chapter 3 Linear History

51

�Keeping Track of Your HEAD
As described earlier, we can have multiple branches in the same repository and even

pointing to the same commit. This makes it nonobvious what branch we are currently

working on. In Git, the branch that is currently active is said to be checked out. Git uses a

file called HEAD to keep track of what is currently checked out.

In Figure 3-3, you can see how the HEAD pointer references a branch pointer that is

moving while we create commits.

Figure 3-2.  Three branches in a linear history. A and B point to the same commit,
while C points to a predecessor of A and B

Chapter 3 Linear History

52

What HEAD is pointing at defines two things. First, HEAD points to a branch, that

is, the branch that moves as we make more commits. Second, it is the commit that our

workspace and stage are compared to when we use commands like git status.

�Committing on Your Branches
From the previous chapter, we know how to create commits. And we have now covered

a branch pointer and the HEAD pointer also. This means we are now ready to create a

few commits on our master branch. An important point to note, as we commit, is that

the HEAD pointer does not change. It keeps pointing to the master branch, and what the

master branch points at changes.

The following exercise will go through the scenario in Figure 3-3 with git commands.

Figure 3-3.  How the branch moves

Chapter 3 Linear History

53

COMMITTING

In the following exercise, we will first see that our history matches that of Figure 3-3. Then we

will make a commit and see that our history now matches the bottom half of Figure 3-3. This

exercise can be found in the source code for this book.

$ git log --oneline

f157eed (HEAD -> A, B) 4

3652176 3

5cbbdc1 (C) 2

6856025 1

$ echo 5 > README.md

$ git commit -am "5"

[A 933a6c5] 5

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git log --oneline

933a6c5 (HEAD -> A) 5

f157eed (B) 4

3652176 3

5cbbdc1 (C) 2

6856025 1

As could be seen in the following exercise, we move a branch when we create commits, yet

the HEAD remains unchanged.

�Checking Out a Previous Version
So far, we have only concerned ourselves with creating commits. We have not been

navigating history actively. In this section, I will show you how you can switch between

versions in your workspace. A key feature of Git is that it is fast. This also means that

making your workspace resemble a different version of your code base is a trivial task.

As Git is distributed, we have the entirety of the repository represented locally, which

also allows these operations to happen, even if we are offline.

Chapter 3 Linear History

54

We use the command `git checkout <target>` to put a specific revision in our

workspace. As target checkout can grab anything that ends up in resolving a commit.

Most commonly, we use branches, tags, or commit shas. Git checkout is a two-step

process. First, it moves the HEAD pointer to the specific revision. Then, it takes what

content is in that revision and moves it into the workspace, to make the workspace look

like that revision. If Git is unable to do this in a safe manner, it will abort the checkout.

That means that if you have work that would be overwritten by the checkout, Git will not

complete the operation. Git will also not clean up any files lying around untracked. If we

use a tag or a commit sha as the target for the checkout command, we will end up in a

detached HEAD state. This sounds more dangerous than it is. It simply means that we

are not currently tracking any branch and potentially we can lose the work that we do in

this point as we are not committing on any branch. There is however no reason to worry

about this. Later, we will solve exactly this issue together.

In the following exercise, we will see how we can switch between different versions

of repository using the command git checkout. We will check out separate commits, see

how the workspace changes, and get back to the most recent version.

CHECKING OUT DIFFERENT VERSIONS

This exercise starts with the end state of the previous exercise.

$ git log --oneline --decorate

7f1c255 (HEAD -> A) 5

f157eed (B) 4

3652176 3

5cbbdc1 (C) 2

6856025 1

$ cat README.md

5

$ git checkout 4

error: pathspec '4' did not match any file(s) known to git.

$ git checkout B

Switched to branch 'B'

Chapter 3 Linear History

55

$ cat README.md

4

$ git log --oneline --decorate

f157eed (HEAD -> B) 4

3652176 3

5cbbdc1 (C) 2

6856025 1

$ git checkout C

Switched to branch 'C'

$ cat README.md

2

$ git checkout A

Switched to branch 'A'

$ cat README.md

5

$ echo "Important information" > README.md

$ git checkout B

error: Your local changes to the following files would be overwritten by

checkout:

 README.md

Please commit your changes or stash them before you switch branches.

Aborting

Notice that when we try to check out something that will overwrite changes in our workspace

in an unsafe way, Git will prevent that action and will advise on possible actions.

When you run through the preceding exercise, notice how quick each operation

is. It barely takes any time at all. While this is a small and trivial repository, similar

performance can be seen on even quite large repositories. Simply the fact that Git does

not need to communicate with a server is a big advantage, even assuming the best

conditions on network connectivity and server load.

Chapter 3 Linear History

56

�Seeing the Diff Between Different Versions
In the previous section, we saw how we could instantiate any version of our code

base into our workspace. With this knowledge, a common way to figure out what the

difference between two versions of our repository is is to have two copies of the same

repository on disk, check out the different versions in the different folders, and compare

them. This can either be done by hand, investigating areas of interest, or be done using

a tool to show the difference. This is not idiomatic Git. It is also error prone and can lead

to tedious rework, as you repeatedly check which version was in which folder and try to

figure out which file to copy where.

Git solves this with the diff command. The diff command shows the difference

between two commits. The command takes two commits, or references to commits as

arguments. If only one argument is given, HEAD is assumed for the first argument. The

command then looks like this: git diff <commit1> <commit2>, and an example could

be git diff master release-1.0. This will then show what content wise is the difference

between the commit master refers to and the commit that release-1.0 refers to.

Note T he order of the arguments to git diff matters. A file creation in one
direction becomes a file deletion if you switch the order of the arguments. 20 lines
added becomes 20 lines removed. This can potentially lead to confusion when you
try to figure out what went into a changeset.

My intuition around diff is that I point Git to two different commits, and it will tell me

what I would have to do to go from one to the other. This can of course also be seen as

what has happened between the two. In Listing 3-1, this is shown, as well as the impact

of the order of the arguments to diff.

Listing 3-1.  A diff and the impact of the order of the arguments. Here, we need to

delete a 2 and add a 5 or, in the other direction, delete a 5 and add a 2

$ git diff C A

diff --git a/README.md b/README.md

index 0cfbf08..7edff8 100644

 --- a/README.md

+++ b/README.md

Chapter 3 Linear History

57

@@ -1 +1 @@

 -2

+5

$ git diff C A

diff --git b/README.md a/README.md

index 7edff8..0cfbf08 100644

 --- a/README.md

+++ b/README.md

@@ -1 +1 @@

 -5

+2

The diff command does not pay any attention to the history between the commits,

whether that is diverging or not. Git simply tells you what the difference is between the

two workspaces represented by the commits you pass as arguments.

Sometimes, patch output can be a bit difficult to parse – in particular, small changes

in long lines. This can sometimes be helped with the flag --word-diff, which will inline

the change in the line rather than as two separate lines. This can be seen in Listing 3-2.

Listing 3-2.  Showing how it is much easier to see what the changes are using

the --word-diff flag. This can vary from use case to use case

Normal Diff

 <Navbar bg="success" variant="dark">

 - <Navbar.Brand href={window.location.host}>Cultooling</Navbar.Brand>

+ <Navbar.Brand href={homeUrl()}>Cultooling</Navbar.Brand>

 <Nav className="mr-auto">

 - <Nav.Link href={window.location.host}>Home</Nav.Link>

+ <Nav.Link href={homeUrl()}>Home</Nav.Link>

 </Nav>

 </Navbar>

With --word-diff

<Navbar bg="success" variant="dark">

 <Navbar.Brand

Chapter 3 Linear History

58

[-href={window.location.host}>Cultooling</Navbar.Brand>-]

{+href={homeUrl()}>Cultooling</Navbar.Brand>+}

 <Nav className="mr-auto">

 <Nav.Link

[-href={window.location.host}>Home</Nav.Link>-]{+href={homeUrl()}>Home

</Nav.Link>+}

 </Nav>

 </Navbar>

We can also use the diff command without arguments or with the flag --staged to

see the difference between our workspace, stage, and repository. These two commands

are strong as tools that will help you become more deliberate about the commits you

make.

�Git Katas
In order to support the learning goals of this chapter, I urge you to go and solve the

following Git katas:

–– Detached HEAD.

–– It can be useful to also do the basic-commits again and pay attention

to the branch-specific things going on.

�Summary
In this chapter, we first covered using a simple branch including the HEAD pointer

that keeps track of what we currently have checked out. We also created a few commits

and saw our branch pointer move as we did so. Afterward, we moved through our

history with the checkout command and rounded off with some diff magic, showing us

exactly what happens between two points in history. After this chapter, you should feel

comfortable working with a linear branch history.

Chapter 3 Linear History

59
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_4

CHAPTER 4

Complex Branching
In the last chapter, we looked at a linear history. This can be fine for trivial repositories,

but if we are confident working with branches, it will introduce almost no overhead, so

we can wield the power of branches, even for our simplest projects.

There are many benefits from working actively with branches in Git. We will cover

collaboration with multiple developers in the next chapter, but even for a solo developer,

there are wins from branches. They primarily derive from the fact that we can use

branches to isolate our work. When we isolate our work, we can mitigate some of the cost

of multitasking. By isolating our work on a branch, we can always create a new branch,

should an urgent task need to be developed. We can safely run experiments on a branch

and only integrate our experiment if it comes out in a favorable way. As mentioned before,

branches are a great cause of confusion around how Git works. This is very unfortunate

as they are the key to both gaining the full value of Git and understanding many concepts

including working with remote repositories and all but the simplest collaboration schemes.

In this chapter, we will focus on getting a healthy mental model around multiple

branches and get enough hands-on experience that you will be able to use and reason

about branches.

�Creating Branches
We have covered that a branch is a pointer to a commit. Concretely, that means that a

branch is a file in the repository containing the sha to the commit the branch points at.

This can be seen in Listing 4-1.

Listing 4-1.  A branch is a file containing the sha of the commit it points to

$ cat .git/refs/heads/master

5355b7b7f01b6d69c1ae94b428f54952139eb2f8

$ git log --oneline --decorate -n 1

5355b7b (HEAD -> master, origin/master, origin/HEAD) [Chapter 7] Add

aliases exercise

https://doi.org/10.1007/978-1-4842-6270-2_4#DOI

60

We can use the command git branch to manipulate and list branches. There are

subtleties when it comes to remote branches, but we will cover those in the next chapter.

When we use the command without arguments, we list the (local) branches.

We also create branches using the branch command. We call with two arguments:

git branch <branch-name> <commit>. As an example: git branch my-branch master.

This will create a branch in the repository. It will be called my-branch and point to the

same commit as master. This can be seen in Figure 4-1.

Figure 4-1.  Creating a branch from a reference

Figure 4-2.  Creating commits on a branch will add the commit and update the
branch pointer

Now that we have created a branch, we can do some work on the different branches.

Depending on what HEAD currently is pointing at, new commits will be created at an

appropriate location, with the currently checked-out branch updated to point at the new

commit. This can be seen in Figure 4-2.

Now that we have seen how it looks when we create commits on branches, we are

ready for the next step in branching

Chapter 4 Complex Branching

61

�Working with Multiple Branches
In Git, it really does not make any sense to work without any branches, and we are by

default always working on one branch: the master branch. But the true power comes

from juggling multiple branches. There are two primary tasks when working with

multiple branches. One is keeping our work separate on different branches. We have

covered that earlier. The other part is getting changes made on multiple branches into

the same branch. This is commonly referred to as merging. There are multiple ways to do

this. In this chapter, we are going to cover merging and rebasing.

Conceptually, when we want to merge two branches, we create a new commit

containing the joint changeset from the two branches. This works by finding the point

at which the branches diverged and joining the two changesets. This can be seen in

Figure 4-3.

Figure 4-3.  A common merge, merging the branches pointing to C and E,
respectively

Chapter 4 Complex Branching

62

In the case that the changesets are compatible, Git will handle everything for us. If

the changesets are not compatible, or Git fails to merge them, we will end up in a merge

conflict. We will cover these later in this chapter. In most code bases I’ve been working

with, merge conflicts have been uncommon.

�Merge
Merging is another place where our language can come in the way of our understanding

of Git. We both talk about the abstract merging of branches, disregarding how we intend

to do this, and we talk about the command `git merge`.

The common way to use the merge command is with the form `git merge branch`

which will merge the changeset from branch into the branch currently checked out, for

example, git merge feature-123. There are other options, but I like this way of working

as we then only change the branch that we are on, which is good as it leads to relatively

few issues. This merge is how Figure 4-3 was created.

�Fast-Forward Merges

Fast-forward merges are the simplest form of merges in Git. Unfortunately, there is also a

bit of misunderstanding around how they work. This section will hopefully leave you in a

state where you love fast-forward merges.

A fast-forward merge happens when there has been no divergence between the

branches you are merging. This occurs when a branch is a continuation of another. In

Figure 4-4, we can see this scenario as the feature branch is linearly ahead of master.

To merge the change in feature, all we need to do is to move the master branch pointer

to the commit feature points at. As all the changes contained in the master branch are

already part of the feature branch.

Chapter 4 Complex Branching

63

This also means that there is no possibility for any conflict doing a fast-forward

merge. For this reason, fast-forward merges can be considered safe.

Note  Some workflows use a Git feature where a new commit is created to mark
the merge of a branch. This creates a merge commit, without a changeset, to mark
that at this point the branches were merged. This is done with the command git
merge --no-ff <branch>.

FAST FORWARD

In this exercise, we are going to start with only the master branch. It has two commits on

it. We are going to create a branch called feature, create a commit, and merge that into

master. This exercise can be found in the exercise folder as chapter4/fast-forward/.

$ git log --oneline --decorate

fa8d7db (HEAD -> master) second commit

35b6a68 Initial Commit

$ git checkout -b feature

Switched to a new branch 'feature'

$ git add 1.txt

Figure 4-4.  Doing a fast-forward merge does not result in any new commits, but is
a simple operation

Chapter 4 Complex Branching

64

$ git commit -m "Adding file1"

[feature 4b346fe] Adding file1

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 1.txt

$ git log --oneline --decorate

4b346fe (HEAD -> feature) Adding file1

fa8d7db (master) second commit

35b6a68 Initial Commit

At this point, the feature branch contains a commit that is not on master, but master contains

nothing that is not also reachable from the feature branch.

$ git checkout master

Switched to branch 'master'

$ git merge feature

Updating fa8d7db..4b346fe

Fast-forward

 1.txt | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 1.txt

Git tells us it is doing a fast-forward and from which commit it moves the pointer.

$ git log --oneline

4b346fe (HEAD -> master, feature) Adding file1

fa8d7db second commit

35b6a68 Initial Commit

If we compare this out with the one from the log statement before the fast-forward merge, we

can see the commit ID is identical. This means that no new commit has been created and the

change has been purely a branch update.

As can be seen from the preceding exercise, fast-forward merges by default do not

result in new commits. This means that this type of merges is a very quick operation as it

is simply a two-step procedure: write updated sha to the branch file, and then check out

the workspace at that revision.

Chapter 4 Complex Branching

65

�Three-Way Merges

In the previous section, we covered trivial or fast-forward merges, where there are no

divergence and no possibility of conflicts. In this section, we will treat the plain merge

or the three-way merge. These occur when both of the branches that we are merging

contain work that is only on one branch. This divergence is wholly natural and happens

in most situations where multiple developers are collaborating on a single source base.

Commonly, what happens is that while we were developing on our feature branch, some

other developer has delivered some changes to the master branch. As such, the point at

which we branched out from the master branch is no longer the newest commit on the

master branch. As commits represent a specific state of the workspace, we need to create

a new commit that contains the state of the workspace after grabbing both changesets. In

Figure 4-5, you can see how this looks on the Git graph before and after a merge. In the

next exercise, we will cover how it looks on disk.

Figure 4-5.  Merging two branches creates a new commit and updates a branch
pointer

Three-way merges are named as such because three points are involved in the

merge – both end states as well as the point from which both branches depart. We name

these the source, target, and merge base, respectively. This can be seen in Figure 4-6.

Chapter 4 Complex Branching

66

Git uses the merge base to determine the different changesets and calculate

whether they overlap and thus cannot be automatically fused by Git. The result will be

a commit and the receiving branch will be updated. When we have completed a three-

way merge in one direction, if we do the merge in the other direction, it will always be

a fast-forward merge.

THREE-WAY MERGE

In this exercise, we have two branches with different content that we like to merge. We will

first merge the content from master into feature. Then, we will update the master to the

feature branch. This is a common workflow as you can first test out the end state in your

feature branch before delivering to master. The repository for this exercise can be found in the

exercises as chapter4/three-way-merge/.

Figure 4-6.  The different components of a three-way merge: source, target, and
merge base

Chapter 4 Complex Branching

67

$ git log --all --graph --oneline

* d03b0bd (HEAD -> feature) Add feature.txt

| * 390d440 (master) Add master.txt

|/

* ea2b9f5 second commit

* f90da57 Initial Commit

We see that we have two branches that have diverged.

$ git merge master

Merge made by the 'recursive' strategy.

 master.txt | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 master.txt

When we merge the changes from master into the feature branch, the merge is solved

using the three-way merge. It is using the recursive strategy which is an implementation detail

we can safely ignore.

$ git log --all --graph --oneline

* ddeeef9 (HEAD -> feature) Merge branch 'master' into feature

|\

| * 390d440 (master) Add master.txt

* | d03b0bd Add feature.txt

|/

* ea2b9f5 second commit

* f90da57 Initial Commit

The three-way merge led to a new commit ddeeef9. Note that the master branch still points

at the same commit it did before.

$ git checkout master

Switched to branch 'master'

$ git merge feature

Updating 390d440..ddeeef9

Fast-forward

 feature.txt | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 feature.txt

Chapter 4 Complex Branching

68

Now that we merge the branches in the other direction, we get a fast-forward merge. This is

true because all the content reachable from master is also reachable from feature, and Git

thus considers this merge already solved. Many workflows only allow fast-forward merges on

master, and this is how to achieve it.

$ git log --all --graph --oneline

* ddeeef9 (HEAD -> master, feature) Merge branch 'master' into feature

|\

| * 390d440 Add master.txt

* | d03b0bd Add feature.txt

|/

* ea2b9f5 second commit

* f90da57 Initial Commit

In the preceding code, we walked through a three-way merge and noticed that repeating a

three-way merge in the other direction caused a fast-forward merge.

The preceding exercise went through the happy path scenario. When our merges are

simple, Git can easily resolve them automatically and we feel powerful. Unfortunately, it

is not always the case that Git can resolve merges for us. We cover this in the next section.

�Merge Conflicts

It can be the case that Git is unable to determine what the result should be from merging

branches. In this case, Git will ask for the user to resolve the merge and resume the

process. This situation is called a merge conflict. Git will drop to the prompt and mark

files as being in a state of conflict. Listing 4-2 shows this through a status command.

Listing 4-2.  Git status shows that we are in a state of an unresolved merge

conflict and instructs as to what our next steps are

$ git status

On branch master

You have unmerged paths.

 (fix conflicts and run "git commit")

 (use "git merge --abort" to abort the merge)

Chapter 4 Complex Branching

69

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: mergesort.py

no changes added to commit (use "git add" and/or "git commit -a")

The simplest way that I can explain how to resolve a merge conflict is you need to

make the workspace look like you want the merge to be and then tell Git that you are

done. Git outputs so-called markers in the conflicted files. This can be seen in Listing 4-3.

Listing 4-3.  Merge markers in a file show origin of different changes

$ cat mergesort.py

from heapq import merge

def merge_sort2(m):

 """Sort list, using two part merge sort"""

 if len(m) <= 1:

 return m

 # Determine the pivot point

 middle = len(m) // 2

 # Split the list at the pivot

<<<<<<< HEAD

 left = m[:middle]

 right = m[middle:]

=======

 right = m[middle:]

 left = m[:middle]

>>>>>>> Mergesort-Impl

<Rest of file truncated>

If you encounter complex merge conflicts, often it helps to use an external merge

tool such as meld or kdiff. Under normal circumstances must merge conflicts are simple

to resolve and can simply be handled in your normal editor. Editors, such as Visual

Studio Code, understand the markers that Git put in your files and this makes it easier to

resolve the merge conflict.

Chapter 4 Complex Branching

70

There can be multiple merge conflicts in the same file. Git looks at smaller chunks,

to figure out similarities between versions of files. This makes it easier to handle

merge conflicts as you do not have to decide on an entire file in one go, but rather can

decompose into smaller segments to compare.

MERGE CONFLICT

In this exercise, we will go through the same situation as in the previous exercise except that

the diverging branches will have noncompatible changes. This will lead to a merge conflict that we

will resolve. This exercise can be found in the examples under chapter4/merge-conflict/.

$ ls

0.txt master.txt

$ cat master.txt

feature

$ git log --oneline --decorate --graph --all

* 6ce4209 (HEAD -> feature) Add feature.txt

| * c301b9a (master) Add master.txt

|/

* f237b8b second commit

* 7e48076 Initial Commit

$ git checkout master

Switched to branch 'master'

$ cat master.txt

master

Now, we have gotten our bearing in the repository. Two branches have diverged. Each has

added the file master.txt with different content.

$ git merge feature

Auto-merging master.txt

CONFLICT (add/add): Merge conflict in master.txt

Automatic merge failed; fix conflicts and then commit the result.

After we initiate the merge, Git detects the merge conflict and pauses the merge, prompting us

to resolve the merge.

Chapter 4 Complex Branching

71

$ git status

On branch master

You have unmerged paths.

 (fix conflicts and run "git commit")

 (use "git merge --abort" to abort the merge)

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both added: master.txt

no changes added to commit (use "git add" and/or "git commit -a")

Using git status to show us where we have problems, lets us know that Git was unable to

merge the file master.txt.

$ cat master.txt

<<<<<<< HEAD

master

=======

feature

>>>>>>> feature

Git has put merge markers showing the different changesets in master.txt. This shows that

the current state is the file containing master and the incoming change is the file containing

feature.

$ echo master > master.txt

$ git add master.txt

warning: LF will be replaced by CRLF in master.txt.

The file will have its original line endings in your working directory.

Most often, we want to complete the merge inside of our editor or merge tool, but in this

case, I simply select the state that I want. Note that this state can be either of the solutions or

some combination of them. This is why Git needs human intervention – it is unaware of the

semantics of our source. We use add to mark the file as being in a resolved state.

$ git status

On branch master

All conflicts fixed but you are still merging.

 (use "git commit" to conclude merge)

Chapter 4 Complex Branching

72

$ git commit

[master 3be77eb] Merge branch 'feature'

$ git log --oneline --decorate --graph --all

* 3be77eb (HEAD -> master) Merge branch 'feature'

|\

| * 6ce4209 (feature) Add feature.txt

* | c301b9a Add master.txt

|/

* f237b8b second commit

* 7e48076 Initial Commit

Having resolved the merge conflict, we see we are in a similar situation as the happy path

three-way merge. We just had to help Git a little bit along the way.

As can be seen in this exercise, it is not a daunting task to resolve a merge conflict. It

can however be difficult in complex scenarios and when working with a code base that

we are not comfortable with.

�Rebase
An alternative to the three-way merge is the rebase. In contrast to the three-way merge

that creates a new commit representing the workspace resulting from merging two

branches, the rebase intuitively moves the commits. This is technically wrong, but

we’ll keep the intuition for now. When we rebase our branch on top of another branch,

intuitively we move the commits on our branch and apply them on top of the target

branch. This can be seen in Figure 4-7.

Chapter 4 Complex Branching

73

We use the git rebase <target> command to rebase HEAD on top of <target>.

Assuming feature is checked out, we would write git rebase master to rebase the

feature branch on top of master. This can be seen in Figure 4-7(c).

REBASE EXERCISE

In this exercise, we start with the same situation as we do in the three-way-merge exercise,

but instead of merging the branches, we are going to rebase feature on top of master

instead. The repository can be found in the exercise folder as chapter4/rebase/.

$ git log --oneline --graph --all

* b188294 (HEAD -> feature) Add feature.txt

| * 8cab888 (master) Add master.txt

|/

* 6fb6ffc second commit

Figure 4-7.  Rebase vs. merge. Starting from A, B is the result from merging master
to feature, while C is the result of rebasing feature onto master

Chapter 4 Complex Branching

74

* 2a97e8c Initial Commit

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: Add feature.txt

$ git log --oneline --graph --all

* 449abd2 (HEAD -> feature) Add feature.txt

* 8cab888 (master) Add master.txt

* 6fb6ffc second commit

* 2a97e8c Initial Commit

There is one huge difference between the outcome of this rebase, rather than the merge.

Namely, we have not increased the amounts of commits, and we have reduced the complexity

of the Git graph. In particular, this is a good way to work when updating your branch to contain

the newest from master while you are developing your code. Notice that feature is pointing to

a new commit sha.

$ git show b18829

commit b1882942ed4722828d595e3428fbac75522bb587

Author: Johan Abildskov <randomsort@gmail.com>

Date: Mon May 4 09:34:52 2020 +0200

 Add feature.txt

diff --git a/feature.txt b/feature.txt

new file mode 100644

index 0000000..e69de29

Here, we use show to see the commit that feature previously pointing to is still present, and

thus we can recover safely from the rebase.

Note  While our intuition around a rebase is that we move a branch, this is not
the case. New commits are made on top of the merge base, and the old commits
are left without any references to them. They can thus be recovered until garbage
collection occurs.

Chapter 4 Complex Branching

75

There are many diverse opinions on the case of rebasing or merging. I have a few

opinions on this. First, it is key that the entire team works in a way that results in a

consistent history no matter who delivers a given changeset. This most likely means

everyone rebases or everyone merges. There can also be implications coming from the

workflow that the team is using to develop. If, however, the workflow dictates whether

you can use merges or rebases from a technical perspective, it probably needs to be

looked at, and you need to reevaluate whether it is a sane way of working.

Second, if you are not working on a shared branch, you should always rebase.

This leaves your history clean and bundles your commits nicely together for a concise

delivery. This also makes it easier for you to manipulate your local history before you

deliver, as we will cover in a later chapter. As rebasing changes the commit shas, it is

considered bad practice to rebase branches that are public. However, you might be

working on a public branch that are your own. It could be published to get a build from

a continuous integration system, or feedback from a peer. In these cases, you should not

refrain from rebasing your own, but public branch.

�Tags
So far in this chapter, we have covered branches and how they are lightweight and easy

to move around. There are many uses for a named reference for a commit that is more

static. In Git, we have tags to supply that functionality. A tag is a reference to a commit.

Commonly, tags are used to mark released versions of our source code, so we have a

named reference to the source code that produced any given version of our software.

There are two types of tags, lightweight and annotated. Lightweight tags are like

branches except they are static. This means that they are simply a reference to a

commit with no additional information. Annotated tags are full objects in the Git object

database, takes a message, and provides additional information. Annotated commits are

created by adding -a, -s, or -m to the tag command. The tag command looks like this:

git tag <target> for lightweight tags. For example, git tag v1.6.2 a233b will create

a lightweight tag pointing at the commit with the prefix a233b.

If we omit the target, the tag will be created at HEAD.

Chapter 4 Complex Branching

76

TAGGING

In this exercise, we will go into a simple repository and add some tags and investigate them.

The repository for this exercise can be found in chapter4/tags/.

$ git tag

First, we notice there are no tags. This is consistent with the output from the flowing log command.

$ git log --oneline --all

f203381 (HEAD -> feature) Add feature.txt

0a664dc (master) Add master.txt

810eb22 second commit

0cae311 Initial Commit

Now, we create a tag at the commit with the sha 810eb22. We use a unique prefix of the commit.

$ git tag v1.0 810eb

The tags now both show up when we list all tags, and as a reference on the log.

$ git tag

v1.0

$ git log --oneline --decorate --graph --all

* f203381 (HEAD -> feature) Add feature.txt

| * 0a664dc (master) Add master.txt

|/

* 810eb22 (tag: v1.0) second commit

* 0cae311 Initial Commit

The previous commit was made using a commit sha directly. In the following, we repeat the

same flow, but rather than using a commit, we create a tag from a reference.

$ git tag v2.0 master

$ git tag

v1.0

v2.0

$ git log --oneline --decorate --graph --all

* f203381 (HEAD -> feature) Add feature.txt

| * 0a664dc (tag: v2.0, master) Add master.txt

Chapter 4 Complex Branching

77

|/

* 810eb22 (tag: v1.0) second commit

* 0cae311 Initial Commit

The previous tags are lightweight tags and are pure references. We can create full tag objects

by, for instance, attaching a message to the tag.

$ git tag v3.0 feature -m "pre-release"

Having created the tag, we can see the full information on both the tag and the commit that is

tagged. Contrast this with the same information on the lightweight tag.

$ git show v3.0

tag v3.0

Tagger: Johan Abildskov <randomsort@gmail.com>

Date: Mon May 4 10:04:34 2020 +0200

pre-release

commit f203381f79576e69f4de2a75cd6289ea635f3543 (HEAD -> feature, tag: v3.0)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Mon May 4 10:02:12 2020 +0200

 Add feature.txt

diff --git a/feature.txt b/feature.txt

new file mode 100644

index 0000000..e69de29

$ git show v1.0

commit 810eb22a50a1bd94facd9917531295ddddd27bb7 (tag: v1.0)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Mon May 4 10:02:11 2020 +0200

 second commit

diff --git a/0.txt b/0.txt

index 303ff98..36db9be 100644

--- a/0.txt

+++ b/0.txt

@@ -1 +1,2 @@

 first file

+\n additional content

Chapter 4 Complex Branching

78

As we have seen in this exercise, tags can be used to mark places in our history that

has some significance.

�Detached HEAD
If you have had any Git experience at all before you started reading this book, it is likely

that you have found yourself in a detached head situation, and it is likely that it scared

you. I know because it at least took me some time before this situation did not make me

feel like I did something that I should not have done.

Detached head is a completely normal situation and it is easily remedied. A

detached head simply means that HEAD is pointing to a commit rather than a branch.

The consequence of this is that commits created while in a detached head situation

do not have any references pointing to them. This can make them disappear from git

log, become garbage collected, or simply be unnecessarily difficult to get back to. The

two most common ways to end up in detached HEAD are by explicitly checking out a

commit or by checking out a tag. An example of this is given in Figure 4-8.

Figure 4-8.  Detached head, with a dangling commit

Chapter 4 Complex Branching

79

If the purpose of ending up in a detached head situation is to simply look at code,

to see what the state of the repository was at that point in time, there are no problems,

and we can stay in the detached head state until we are ready to return to the branch we

are working on. If we want to make changes, we are better off creating a branch; this can

be most easily done at checkout time using the flag -b that will create a branch at the

target we are checking out. This looks like git checkout -b <branch-name> <target>.

If we want to create a branch called bugfix at the tag v1.2.7, we use the command git

checkout -b bugfix v1.2.7.

DETACHED HEAD

In this exercise, we will put ourselves in the detached head state and recover from it. The

repository for this exercise can be found in the examples as chapter4/detached-head/.

$ git log --oneline --decorate --graph --all

* adfcb1d (HEAD -> feature) Add feature.txt

| * ca3e69b (tag: v1.0, master) Add master.txt

|/

* 66d6ce7 second commit

* 66d93b9 Initial Commit

We check out the tag that is pointing to the same branch as the master branch.

$ git checkout v1.0

Note: checking out 'v1.0'.

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b <new-branch-name>

HEAD is now at ca3e69b... Add master.txt

The preceding wall of text is the primary reason that a detached head feels dangerous. Note

that even though there are references pointing to the commit we checked out, HEAD is not

pointing to them, but directly to the commit.

Chapter 4 Complex Branching

80

$ git log --oneline --decorate --graph --all

* adfcb1d (feature) Add feature.txt

| * ca3e69b (HEAD, tag: v1.0, master) Add master.txt

|/

* 66d6ce7 second commit

* 66d93b9 Initial Commit

$ git checkout -b new-branch

Switched to a new branch 'new-branch'

Note that we have simply created and checked out a branch at HEAD. Depending on our use

case, we could have checked out the master branch and continued from there.

$ git log --oneline --decorate --graph --all

* adfcb1d (feature) Add feature.txt

| * ca3e69b (HEAD -> new-branch, tag: v1.0, master) Add master.txt

|/

* 66d6ce7 second commit

* 66d93b9 Initial Commit

As can be seen from the following exercise, there is no reason to be afraid of the

detached head, and it is easy to recover from.

�Git Katas
In order to support the learning goals of this chapter, I recommend you go through the

following katas:

•	 Basic-branching

•	 Three-way-merge

•	 Merge-conflict

•	 Merge-mergesort

•	 Rebase-branch

•	 Git-tag

•	 Detached-head

Chapter 4 Complex Branching

81

�Summary
In this chapter, we came far about talking about branches in Git and how they work.

We covered the different types of merges and contrasted merges to rebases. We walked

through resolving merge conflicts. We closed off the chapter with a brief description of

how we can use tags to mark interesting points in our code base. Finally, we deflated the

detached head situation.

Now that we have the foundations for branches in order, we can move on to

collaboration using Git.

Chapter 4 Complex Branching

83
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_5

CHAPTER 5

Collaboration in Git
As with many other things, software development is not fun until we do it together with

other people. Unfortunately, most software developers are not introduced to Git in a

healthy setting. Either they are experiencing Git for the setting in a classroom where the

professor has understood that Git is important and that someone should be teaching

it to the students, but it is simply a footnote in a much larger curriculum. Or they are

introduced to workflows and collaboration in Git in some organization that are more

concerned with doing things according to the described process than in a meaningful

way. This chapter will hopefully get you back on track and enable you to select a Git

workflow and work efficiently with colleagues.

In this chapter, we will first cover the foundations of working with a remote

repository. So far, we have only concerned ourselves with local repositories. Fear not, if

you have grasped branches, remotes will be a small extension of these concepts. After

that, we will compare the most common workflows and discuss pros and cons of each.

�Working with Remotes
Git is said to be a distributed version control system, and Git implements this

distribution through the concept of remotes. Commonly, we work with a single remote

in our repository, and by default, it has the name origin. Most development on software

projects start with a clone of an existing project. This instantiates a local copy of the

original repository on your computer and saves a reference to the original repository as

the remote origin.

https://doi.org/10.1007/978-1-4842-6270-2_5#DOI

84

In client/server-based version control systems, all commands and actions go

through the server. This means that we can do things like lock files, so only one user

at a time can modify it. In Git, it is not so. We work asynchronously and then at the

user’s leisure synchronize our work. Most commonly, this is done through a common

repository manager such as GitHub.

Most of the tasks in collaboration flow around how we manage branches, but other

than that, we work with clone, fetch, push, and pull. With these four commands, 98% of

your day-to-day collaboration work will be covered.

Note  Collaboration typically takes place on a managed server or cloud solution
such as GitHub, GitLab, or Bitbucket. For the purpose of creating self-contained
exercises, we are not using a repository manager. We are modeling the workflows
using local repositories. The last exercise in this chapter should you choose to
complete it requires an account on GitHub and will show off a repository manager.

Figure 5-1.  Git repository managed centrally, but cloned locally. Alice and Bob
can work asynchronously and either coordinate work at the origin or between each
other

Chapter 5 Collaboration in Git

85

�Cloning
There are two scenarios for starting work on a project. First, it can be a new project.

We covered that scenario a long time ago, using git init. Second and perhaps

more common, we are going to contribute to an existing code base, open source or

proprietary. When starting on an existing code base, the first thing that we do is to

clone the repository in order to get a local instance on our machine. We do this with the

command git clone <url> <path>, for example, git clone https://github.com/

randomsort/practical-git/ git-exercises. This will initialize a local repository on

disk, download the entire repository from the remote, check out the default branch into

the workspace, and create a pointer to the remote repository named origin. The default

branch in most cases is the master branch. If we omit the path parameter, Git will use

the repository name instead. In the preceding example, it would be in a folder called

practical-git if we omit the path.

CLONING A REPOSITORY

In this exercise, we will clone a public repository from GitHub and look at what we get on our

disk. This exercise can be done from anywhere, so is not dependent on the exercise source

bundled with this book.

First, we clone the repository https://github.com/randomsort/practical-git-students.

Git tells us a lot about what is going on during the clone, but it is basically uninteresting facts

on performance. Consider it a geeky progress bar.

$ git clone https://github.com/randomsort/practical-git-students git-exercises

Cloning into 'git-exercises'...

remote: Enumerating objects: 7, done.

remote: Counting objects: 100% (7/7), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 7 (delta 1), reused 2 (delta 0), pack-reused 0

Unpacking objects: 100% (7/7), done.

$ cd git-exercises/

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Chapter 5 Collaboration in Git

https://github.com/randomsort/practical-git-students

86

nothing to commit, working tree clean

$ ls

README.md the-practical-git.md

Navigate to the repository and use git status and ls to let us know what we downloaded. We

can see that there are a few files, that we have a clean workspace, and that the master branch

is up to date with the remote. This is as expected as we have done no work in the repository.

$ git log --oneline -n 5

f18e7bc (HEAD -> master, origin/master, origin/HEAD) Merge pull request #1

from the-practical-git/master

1135048 Add the Practical Git Bio

ce866b9 Initial commit

We use git log to see the history. This will likely look different for you, as more pull requests

enter the repository on a frequent basis. Here, we can both see the local branches and those

from the remote. The remote branches are prefixed with origin/.

$ git remote show origin

We use the command git remote show origin to see some details about our remote.

* remote origin

 Fetch URL: https://github.com/randomsort/practical-git-students

 Push URL: https://github.com/randomsort/practical-git-students

 HEAD branch: master

 Remote branch:

 master tracked

This section shows the basic information about the repository’s remote. Usually, fetch and

push point to the same repository, but if you have a highly distributed setup, there is the

possibility of having different read and write servers.

 Local branch configured for 'git pull':

 master merges with remote master

 Local ref configured for 'git push':

 master pushes to master (up to date)

$ git branch

* master

Chapter 5 Collaboration in Git

87

$ git branch --remote

 origin/HEAD -> origin/master

 origin/master

This exercise showed you how you could clone a repository and see the origin.

�Synchronizing with Remote
Now that our local repository is established, we are set up to do some work. The

common workflow in Git is to do some work locally and then synchronize that work with

the remote. Delivering our work to the remote is called pushing. When there is work

available on the remote that we do not have locally, we can get that work using pull or

fetch. There are a few types of differences that can occur between a local remote. They

can either be about objects or references. For the purpose of this chapter, commits are

the only type of objects we concern ourselves with. When we synchronize objects, it is

always an additive operation. We always deliver more objects or download more objects.

We can never delete or modify objects either locally or remotely. This makes object

operations safe, as we never lose an object, bar garbage collection. Secondly, we can

need to synchronize references, that is, branches and tags. They can either disagree on

what they point to or whether they should exist at all.

These divergences are reconciled using branching methods and the methods for

interacting with the remote: push, fetch, and pull. Pull is a shorthand for a fetch and

a merge. Push is the least interesting of the commands. We send the references and

objects that we have to the remote – and if the remote is unable to do a fast-forward

merge on the references, then it will reject the change.

When we fetch, we get all the objects from the remote that we are missing. Then, we

get the references from the remote. They are name spaced such that references from the

remote named origin are prefixed with origin/; thus, the master branch on the origin

is called origin/master when we look at it from our local repository. Thus, the flow for

getting the changes from the master on origin is as follows:

•	 Fetch: To get objects and references from remote

•	 Merge: To get the changes from the remote onto our local master

branch

This can be seen in Figure 5-2.

Chapter 5 Collaboration in Git

88

When we push and get our changes rejected, we go through a fetch/merge loop and

will then be able to deliver our changes.

Note  We can see the origin/ namespace as our cache of how the remote
repository looks. This is not automatically synchronized by Git, so we need to do
the fetch to update our cache. Thus, when we run Git status, the output is based on
our cache, rather than what is on the remote, and this might yield to unexpected
results.

We will cover how this plays out in the next exercise based on the simplified

workflow. Now that we have investigated the moving parts of working with a remote, we

can see the different ways of working and how we can work within them.

Figure 5-2.  (a) Repository before fetching. (b) Repository after fetching.
(c) Repository after merging

Chapter 5 Collaboration in Git

89

�Simplified Workflow
You might have come across the term simplified workflow, master based or centralized

workflow. This workflow is known by many names and is default workflow unless you

configured your repository manager differently. The defining characteristic of this

workflow is that all collaboration happens directly on the master. This means that while

you may have local branches to isolate your work, when you are done, you push to

master. This workflow is how I work with my toy projects, note repositories, and similar

things. The good thing is there is little overhead and almost no process. This makes it

an efficient workflow that is easy to understand, that is, if we stay on the happy path.

The bad thing is that we can have race conditions with our colleagues, and we have no

workflow tools that help keep the quality of the source on our master branch high.

There are basically two scenarios that we need to cover in a master-based workflow.

First, there is the happy scenario where no work has been done in master while we have

been working locally. This case is boring, as this works, and becomes a fast-forward

merge on the remote. This scenario can be seen in Figure 5-3.

Figure 5-3.  (a) Scenario prepush. (b) Scenario after push. Note that before the
push, C and D are not available on the remote

Chapter 5 Collaboration in Git

90

Then, there is the race condition scenario where a colleague has delivered work to

the master branch while we were working locally. This is a much interesting scenario,

as it takes some measure of effort to resolve. The technical detail is that repository

managers only allow you to push fast-forward merges. Any other types of merges must

be reconciled locally. This means that the scenario with competing deliveries looks like

this:

•	 Clone or fetch from origin.

•	 Do work locally and commit.

•	 Push, and be rejected from remote.

•	 Fetch newest changes and merge them into your local master branch.

•	 Push master to origin, as it is now a fast-forward merge.

Note I t is entirely possible that this can happen repeatedly thus locking out
developers from delivering their changes. This either means that the repository
spans too many architectural boundaries or that the workflow you are using is not
scaling with your organization. In any case, this is unlikely to happen for normal
usage, so if you end up here, step back and reflect on repository architecture.

The preceding workflow can be seen in Figure 5-4. First is the scenario where local

changes will be rejected, then the reconciliation, and the fast-forward merge on the

remote.

Chapter 5 Collaboration in Git

91

In the following, we will do an exercise that simulates interacting with a remote

repository on the master branch. As this is a more complex exercise than the previous

exercises, I am going to run through the master-workflow kata in this exercise. The kata

is available in the git-kata repository.

MASTER-BASED WORKFLOW

In this exercise, we are going to go through the entire master-workflow kata and experience

both the happy path and the path with a race condition.

$ git clone https://github.com/praqma-training/gitkatas

Cloning into 'gitkatas'...

remote: Enumerating objects: 111, done.

remote: Counting objects: 100% (111/111), done.

Figure 5-4.  (a) Before we push, this is our world view; (b) as there has been done
work on master on the remote (commit E), push will be rejected. After fetch, this
is how it looks (c). We reconcile the differences with a merge, and the result can be
pushed which leads to (d) status after push

Chapter 5 Collaboration in Git

92

remote: Compressing objects: 100% (99/99), done.

remote: Total 1961 (delta 26), reused 35 (delta 10), pack-reused 1850

Receiving objects: 100% (1961/1961), 528.24 KiB | 1.56 MiB/s, done.

Resolving deltas: 100% (825/825), done.

$ cd gitkatas/

$ cd master-based-workflow/

$ source setup.sh

--- Truncated Output ---

Now, we have fetched the kata and run the proper exercise script, so we are ready to move

through the exercise as described in the README.

$ ls

fake-remote-repository/ fitzgerald-pushes-before-we-do.sh*

First, we clone the fake remote repository and make a commit in our local repository. Then, we

can investigate the relationship between our local and the remote.

$ git clone fake-remote-repository/ local-repo

Cloning into 'local-repo'...

done.

$ cd local-repo/

$ echo "line of text" >> README.md

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: README.md

no changes added to commit (use "git add" and/or "git commit -a")

We note that since we have not created any commits, we are still up to date with the remote

master, also designated origin/master.

Chapter 5 Collaboration in Git

93

$ git add .

$ git commit -m "Added content to the README"

[master 9eea570] Added content to the README

 1 file changed, 1 insertion(+)

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

nothing to commit, working tree clean

As we have created a single commit, and no work has been done on the remote, we are up to date.

$ git push

Counting objects: 3, done.

Writing objects: 100% (3/3), 279 bytes | 279.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To C:/Users/rando/repos/randomsort/gitkatas/master-based-workflow/exercise/

fake-remote-repository/

 054c055..9eea570 master -> master

We can now deliver a change to the remote and move on to the nonhappy path scenario.

$ echo "Another line of text" >> README.md

$ git add README.md

$ git commit -m "Update README"

[master d144b48] Update README

 1 file changed, 1 insertion(+)

Now, after we have updated the README and made another commit, we run a script to

simulate our colleague delivering work.

$../fitzgerald-pushes-before-we-do.sh

 --- Output truncated ---

$ git push

To C:/Users/rando/repos/randomsort/gitkatas/master-based-workflow/exercise/

fake-remote-repository/

 ! [rejected] master -> master (fetch first)

error: failed to push some refs to 'C:/Users/rando/repos/randomsort/gitkatas/

master-based-workflow/exercise/fake-remote-repository/'

hint: Updates were rejected because the remote contains work that you do

Chapter 5 Collaboration in Git

94

hint: not have locally. This is usually caused by another repository pushing

hint: to the same ref. You may want to first integrate the remote changes

hint: (e.g., 'git pull ...') before pushing again.

hint: See the 'Note about fast-forwards' in 'git push --help' for details.

Now when we try to push, we get rejected by the remote. If we read the error output, we can

see that our push is rejected because the remote contains work that we do not. However,

when we run git status, we are told we are up to date.

$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

nothing to commit, working tree clean

This is because we have a local cache of the remote state and that is not updated when we

push, but rather during the fetch.

$ git fetch

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From C:/Users/rando/repos/randomsort/gitkatas/master-based-workflow/exercise/

fake-remote-repository

 9eea570..96a3f9c master -> origin/master

$ git status

On branch master

Your branch and 'origin/master' have diverged,

and have 1 and 1 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

nothing to commit, working tree clean

After the fetch, status tells us that we have diverged from origin/master. This is the scenario

shown in Figure 5-4(b).

Chapter 5 Collaboration in Git

95

$ git log --all --graph --decorate --oneline

* 96a3f9c (origin/master, origin/HEAD) Fitz made this

| * d144b48 (HEAD -> master) Update README

|/

* 9eea570 Added content to the README

* 054c055 Add README.md

$ git merge origin/master -m "merge"

Merge made by the 'recursive' strategy.

 fitz-was-here.md | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 fitz-was-here.md

$ git merge origin/master

$ git status

On branch master

Your branch is ahead of 'origin/master' by 2 commits.

 (use "git push" to publish your local commits)

nothing to commit, working tree clean

After we have merged, we are in the state as shown in Figure 5-4(c). We are two commits

ahead, the commit we had locally and the merge commit.

$ git log --all --oneline --decorate --graph

* a73deeb (HEAD -> master) Merge remote-tracking branch 'origin/master'

|\

| * 96a3f9c (origin/master, origin/HEAD) Fitz made this

* | d144b48 Update README

|/

* 9eea570 Added content to the README

* 054c055 Add README.md

We can now push as we have established the conditions for a fast-forward merge from

origin/master to master.

$ git push

Counting objects: 5, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (5/5), 582 bytes | 582.00 KiB/s, done.

Total 5 (delta 0), reused 0 (delta 0)

Chapter 5 Collaboration in Git

96

To C:/Users/rando/repos/randomsort/gitkatas/master-based-workflow/exercise/

fake-remote-repository/

 96a3f9c..a73deeb master -> master

$ git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working tree clean

As we have seen in this exercise, nothing tremendously exciting is happening, and it is simple

to reconcile the race condition in this simple scenario. If you encounter many merge conflicts,

this is a sign that you should investigate a different way of working.

The master-based workflow is not bad for simple projects, and the low amount of

overhead and process is attractive for many. If you are just starting out, this is a good

workflow to get your bearings. If you continuously pay attention to whether the lack of

process is hurting your productivity, you should be good.

�Fork-Based Workflows
Fork-based workflows are commonly used in open source software, where the trust

model is a bit different than inside an organization. While open source means that

everyone can contribute, it does not mean that all changes will get into the projects. The

fork-based workflow helps enable this way of working.

In fork-based workflows, we have multiple remote repositories. One of which is the

original and contains the ultimate truth of the project. Let us say that I want to contribute

to a major open source project such as Kubernetes. I can’t simply clone the repository

and push back any changes I would like. First, there is the issue of the quality of my

delivery, what if I am horribly incompetent and my work should be kept out? Second,

there is also the vision of the product. If there are no clear vision and guidelines to

what features the project is interested in supporting, it will become an unmaintainable

and unusable mess over time. Thus, even if my work is good, the project might not be

interested in integrating it. And lastly, the two previous points were even assuming that

my intentions were benign. If we do not have guard rails or some sort of access control,

all open source projects would be instantly compromised by bad third parties. There

have been situations where evil actors have injected vulnerabilities in high-profile open

source projects, thus compromising all those that depended on that code.

Chapter 5 Collaboration in Git

97

The solution to this is that we create a so-called fork of the original project, on our

own namespace. This gives us full access to our fork. We can then make our changes

and submit those back to the original project using a mechanic commonly called pull

requests. This can be seen in Figure 5-5.

Figure 5-5.  A pull request from a fork to the original repository. Commonly, the
owner of the fork has no access rights to the original repository

Note I t is called pull requests because you make a second remote available and
request the maintainers to pull your changes into their repository.

FORK-BASED WORKFLOW

This exercise is a bit different in that it will require a GitHub account, and it will be based more

on screenshots than on command-line interface.

If, however, you complete this exercise, you will have contributed to a public repository on

GitHub.

This exercise assumes that you have a GitHub account and that you are logged in.

Chapter 5 Collaboration in Git

98

First, we are going to locate the repository that we are going to contribute to and create a fork

of that.

To do so, open https://github.com/randomsort/practical-git-students in your

browser and locate the fork button as seen in Figure 5-6.

Clicking the fork button will fork the repository to your own account and take you to this page

in Figure 5-7, where it will be your own username rather than mine showing up.

We can note that it is explicit from where we have forked the repository.

Now that we have our own fork, or working copy, we can clone this link, either through the

clone button or the command line.

Figure 5-6.  Fork button in the repository

Figure 5-7.  Forking the repository to your account

Chapter 5 Collaboration in Git

https://github.com/randomsort/practical-git-students

99

I will clone through the command line. I will not cover how to set up credentials or anything

here.

$ git clone https://github.com/the-practical-git/practical-git-students

Cloning into 'practical-git-students'...

remote: Enumerating objects: 3, done.

remote: Counting objects: 100% (3/3), done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), done.

I will now go into the folder and create a file with my bio in it.

$ cd practical-git-students/

$ touch the-practical-git.md

$ vim the-practical-git.md

$ git add .

$ git commit -m "Add the Practical Git Bio"

[master 1135048] Add the Practical Git Bio

 1 file changed, 11 insertions(+)

 create mode 100644 the-practical-git.md

$ git push

Username for 'https://github.com': the-practical-git

Counting objects: 3, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 493 bytes | 493.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/the-practical-git/practical-git-students

 ce866b9..1135048 master -> master

Note that if you are following along with the exercise, you should choose your own name or

username as the filename, and you should use your own username for authenticating for

GitHub. Depending on how your local Git installation is configured you may be prompted for

credentials, or it might just work.

Chapter 5 Collaboration in Git

100

Now, we can go back to our fork and see that the changes we made showed up in the GitHub

interface. For me, I go to https://github.com/the-practical-git/practical-git-

students, but you will have to substitute with your own username.

We can see in Figure 5-8 that we now have a commit that is not present in the original

repository. This is what we would like to contribute back! So we click the Pull request link to

the right.

This takes us to Figure 5-9 where we can see the changeset and what branches we are using.

In this case, we will contribute back to the master branch in the original repository, what is on

our master branch in our fork. So we click the Create pull request button.

Figure 5-8.  Commit in your repository – click Pull request

Chapter 5 Collaboration in Git

https://github.com/the-practical-git/practical-git-students
https://github.com/the-practical-git/practical-git-students

101

This takes us to Figure 5-10 where we can add a bit more information to the pull request.

Commonly, we will describe the changeset, or the reason for the change. This is our

communication toward the maintainers of the repository. In this case, our changeset is trivial,

so we only add a brief description before clicking Create pull request.

Figure 5-9.  Seeing the changeset. Create pull request

Chapter 5 Collaboration in Git

102

In many scenarios, there will be a bit back and forth between the contributors and the

maintainers to make sure that the pull request adheres to their coding guidelines, has the

documentation and tests they need, and so on. In this case, I will accept your pull request, if

you keep the language clean and kind, and do not cover political or religious issue. I would

love for you to say Hi, though!

Now that you have created the pull request, your work is done, unless there are any requests

by the maintainers for reworks. From the maintainer side, we can now go and find the pull

request in the Pull requests tab, as seen in Figure 5-11.

Figure 5-10.  Open a pull request

Chapter 5 Collaboration in Git

103

We click the pull request to see what is being contributed, and here we can comment and

interact with the contributor (Figure 5-12).

Figure 5-11.  Pull requests tab

Figure 5-12.  Interact with pull request contributor

Chapter 5 Collaboration in Git

104

As the maintainer, I can click the Merge pull request and accept your changes. If you have

been following along with this exercise, I am looking forward to merging in your commits!

Note that while this exercise was performed in GitHub, all the big repository managers support

fork-based workflows.

This has been an exercise into fork-based workflows, commonly used in open source

setups. I know some open source projects who have their source in Git have different

email-based systems, but that is so arcane and not used a lot that we will not go into

details on that. In the next section, we will present the more commonly used workflow

inside of organizations.

�Pull Request–Based Workflows
While we could argue that the fork-based workflow described earlier is also based on

pull requests, the workflow we go through in this section is commonly known as pull

request–based workflow. It is a simpler version of the fork-based workflow, starting from

the fact that inside an organization we have a different trust model. Everyone is allowed

to contribute directly to the repository, even though not everyone necessarily has access

rights to merge to the master branch.

The way this works is by using branches as the abstraction rather than forks. This

causes much less overhead in terms of keeping repositories, local and remote, up to date.

The workflow in a pull request–based workflow is as such:

•	 Clone or fetch the repository.

•	 Create a feature branch.

•	 Do work locally and commit to your feature branch.

•	 Push your feature branch to the remote.

•	 Go to the remotes web interface and create a pull request from your

feature branch to your master branch.

•	 Those that have access rights merge or request changes.

Chapter 5 Collaboration in Git

105

The pull request–based workflow is simple, understandable, and does not have

a lot of overhead. However, pull requests lend themselves to a few antipatterns that

we will cover here. First, depending on your way of working, pull requests might be a

manual gate, requiring reviews and manual approval. This can lead to handoffs and

delayed feedback loops; this reduces productivity and morale and leads to lower-quality

software.

Second, pull requests tend to be created late in the development process, when

we are ready to deliver. To great effect, they can be created at the start of the process

as a work in progress branch. This will create traceability and add the ability for early

feedback on work, and collaboration, which increases productivity.

Third, when many pull requests target the same master branch, this can also lead to

issues in synchronizing and maintaining the pull request, while those that are in front in

the queue get processed. This can also lead to broken builds on the master due to tests

being run on another state that ends up being merged.

Again, if this is something that you encounter, you have outgrown this way of

working, or your repository architecture.

�Git Flow
I have had a long inner discussion on whether to cover the Git Flow or not. It is a

workflow that I have seen many organizations adapt, and none succeed with. It is

described by nvie in his blog post at https://nvie.com/posts/a-successful-git-

branching-model/ as “a successful git branching model.” While I am certain that

some organizations have had good fortune with this workflow, but Git, the tools that

surround it, and our ways of working have outgrown it. Thus, Git Flow is, for most uses,

an antipattern. The problems that we try to solve by introducing the abstractions and

the “develop” branch often end up with doing the exact opposite. We end up with long

merge queues, complex workflows, and integration hell in multiple directions. So, I do

really recommend against it.

The scenario I can imagine where Git Flow is useful is if you have a completely

dysfunctional way of working and you need a temporary transition flow in order to get to

a sane place. This can help with the organizational resistance, tooling, and upskilling as

required.

Chapter 5 Collaboration in Git

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

106

�Git Katas
To support this chapter’s learning goals, I recommend that you go through your master-

workflow kata of the previous exercise. After that, if you have not already covered the

exercise doing a pull request on GitHub, I suggest you backtrack to that and make the

pull request now. I look forward to saying Hi and hearing from you!

�Summary
In this chapter, we covered a few basic Git workflows and showed how you can

collaborate using Git. Hopefully, you now feel more confident that you can be a valuable

contributor in a software organization. It is important to me that you take charge of your

workflow and do not let the workflow dictate how you work, but rather let the way you

work dictate your workflow. If there is a mismatch between the desired way of working

and the implemented Git workflow, you will live in pain and frustration.

I recommend that you consider the following questions on a routine basis:

•	 Is my workflow introducing manual gates or handoffs?

•	 Is my workflow making it easy to deliver changes?

•	 Do I feel confident in our workflow?

•	 Does the workflow introduce unnecessary bureaucracy?

•	 What are the common mistakes that our developers make? Can we

do something to minimize either the impact or frequency of these?

If we keep asking these questions and accept that our workflow is not a dead static

thing, but rather something that lives and evolves together with our software, we will end

up in a good place.

Chapter 5 Collaboration in Git

107
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_6

CHAPTER 6

Manipulating History
It may seem very counterintuitive that I put a full chapter into manipulating history.

Version control is at its core about traceability, reproducibility, and immutability. But

Git lets you manipulate the history. For any public history, published to colleagues

or available on the Internet, we must tread very carefully and use with care and

responsibility the powers this chapter bestows us. But for local history, before we'd

publish it can bring tremendous value to sculpt the version history to fit the logical units.

In this chapter, we will first cover undo a change that is present in our history with

revert. This allows us to safely undo previous work while maintaining full traceability

and immutability.

Next, we are going to cover reset which is the big red button for undoing large chunks

of our history, and not just removing changes from our workspace but also removing

them from our history. It also does less impactful stuff and is my favorite tool for juggling

branches locally.

Last, we cover the interactive rebase which allows us to combine, split, delete,

and reorder commits in our history. This is an extremely powerful tool, but can feel

a bit scary, and again should be kept a long distance from public history. In terms of

delivering the best possible history to colleagues or your future self, no tool is better.

�Reverting Commits
There are many scenarios where we need to undo some change in our history. If we are

lucky, it is the most recent change, but likely it is not. These changes that we’d like to

remove from our applications can be bugs introduced, features no longer used, or simply

some clutter that we would like to remove. In this scenario, where we have a specific

commit that introduces a change that we would like to remove, we can use git revert. The

logic of git revert is that it creates a commit that is the reverse changeset of the commit

that we want to revert. This can be seen in Figure 6-1.

https://doi.org/10.1007/978-1-4842-6270-2_6#DOI

108

In this scenario, we are not actively manipulating history, we are rather using Git as

a shortcut to revert a change. Without Git, we would be forced to manually try and figure

out how to undo the given changes and then create that commit ourselves.

This also means that we are not doing anything that can compromise the traceability

established through Git. As such, it is safe from an auditing perspective to use revert on

public history. Whether you are breaking any functionality that you did not intend is

beyond the scope of Git. Always run your tests!

REVERT EXERCISE

In this exercise, we will go through reverting a commit. The repository for this exercise can be

found in the source code in Chapter 6 in the folder revert/.

$ ls

a.txt b.txt

$ git log --oneline

5be4a3d (HEAD -> master) Add File B

c8482f6 Add File A

We see a simple history and we want to undo the changes introduced in commit c8482 with

the message “Add File A”.

First, we use git show to see what changeset the commit represents.

$ git show c8482

Figure 6-1.  (a) Two commits adding a file each. (b) History after running the
command git revert a

Chapter 6 Manipulating History

109

commit c8482f67747fd8dcb6ced373d89ce3e8dc7d7754

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sun Jun 14 16:05:10 2020 +0200

 Add File A

diff --git a/a.txt b/a.txt

new file mode 100644

index 0000000..4ef30bb

--- /dev/null

+++ b/a.txt

@@ -0,0 +1 @@

+file a

Besides the ordinary commit information, we also see the diff. Here, we can see that the file

a.txt was created. This is the basis for what we will revert.

$ git revert c8482

Removing a.txt

hint: Waiting for your editor to close the file...

[master 26dc609] Revert "Add File A"

 1 file changed, 1 deletion(-)

 delete mode 100644 a.txt

When we target the commit to revert, we get the usual commit message prompt. It is prefilled

with a sane message, so we can save the file and have Git create the commit.

$ git log --oneline

26dc609 (HEAD -> master) Revert "Add File A"

5be4a3d Add File B

c8482f6 Add File A

We observe that Git has created a new commit, so let us see what it contains.

$ git show 26dc

commit 26dc6094fbbd6293bb2a69f354d78008194ea6c3 (HEAD -> master)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sun Jun 14 16:05:53 2020 +0200

 Revert "Add File A"

 This reverts commit c8482f67747fd8dcb6ced373d89ce3e8dc7d7754.

Chapter 6 Manipulating History

110

diff --git a/a.txt b/a.txt

deleted file mode 100644

index 4ef30bb..0000000

--- a/a.txt

+++ /dev/null

@@ -1 +0,0 @@

-file a

Here, we get the exact opposite of the commit we reverted, namely, that the file is no longer

present. We get a bit more elaboration in the body of the commit message as the trace to the

original commit is maintained.

$ ls

b.txt

As expected, we now only have b.txt in our workspace. As has been shown in this exercise,

reverting commits can be a safe way to undo a change introduced at an arbitrary point in

history.

Reverting commits can be done easily and safely if you as a developer take care of

the semantics of the changes you are juggling. It will likely be safer than trying to revert

changes manually, without tool assistance. Git tooling like revert and others are another

good reason to make your commits atomic and self-contained.

�Reset
Reset is one of my favorite Git commands, not only because of its powerful functionality

but also because it is one of the commands that allow us to uncover the most knowledge

on how Git works and how our intuition might be in conflict with this.

Git is overall very conservative with taking actions that might cause you to lose your

work unexpectedly. Git reset, in its hard mode, is one of the ways that Git will throw away

unsaved work without warning. It does require an active choice by the user, so this is not

too bad in itself. Unfortunately, reset is also one of the commands that have a horrible

user experience. I hope to guide you through the command and combined with the

exercise and doing the katas that you will feel confident introducing the reset command

in your everyday coding life.

Git reset has three modes: soft, mixed, and hard. We will go through them in turn

and end up with an exercise covering all three.

Chapter 6 Manipulating History

111

�Soft Reset
In the soft mode, git reset --soft <ref>, we are only manipulating HEAD. That is,

the reference currently checked out will be changed to the target given as an argument.

In other words, the soft reset can be used to move a branch pointer.

This can be useful if, for instance, you forgot to create your feature branch before you

started your work and thus have created your commits on master. Then, you could make

it look like you did the right thing all along by first creating your feature branch at master

and then resetting --soft master to origin/master.

As the soft reset leaves both the working directory and the stage alone, it is a

completely safe operation. Figure 6-2 shows updating the branch pointer.

Figure 6-2.  (b) Is the result from starting in (a) and running git reset --soft B

The soft reset can be used to squash a series of commits together into a single commit.

It is done by resetting to the point from which your work started and then creating a

commit. The squash works because all your work, represented by the newest commit, will

then be in the stage that you can commit into a single commit. This is not a typical scenario

and is usually better solved by the interactive rebase that we will cover later in this chapter.

Chapter 6 Manipulating History

112

�Mixed Reset
The mixed reset is the default behavior when you do not pass a mode to git reset. Mixed

reset, besides updating HEAD as soft does, also updates the stage to the targeted place.

When we do not pass any ref to reset, HEAD is the default behavior. This leads to the

confusing situation that the most common use case for reset --mixed is unstaging

files. That is if you have at some point used git add to stage a path, and you no longer

want that path to be staged, you can use the command git reset <path>. The logic is

that you overwrite the stage with what is in the commit pointed to by the ref, which is

HEAD by default. It took me some time to wrap my head around the fact that to remove

something from the stage, you have to put something else there.

Figure 6-3 shows this scenario. In it, we also show the stage, which unless something

has been added to it will be equivalent to the content in HEAD.

Figure 6-3.  Showing that git reset d.txt changes the stage, but not the workspace

Based on the earlier texts, a reasonable question would be, what would happen if we

reset mixed to B, for instance? In this case, we would put B and only B into the stage and

update HEAD.

Chapter 6 Manipulating History

113

�Hard Reset
As mentioned before, the hard reset is one of the only dangerous commands in Git – at

least from the perspective of how likely Git is to throw away your work without giving you

a warning. The mixed reset updates HEAD and the stage, with the content of the target

ref. Hard reset updates HEAD, the stage, and the working directory. This means that not

only unsaved work but also work that is not a part of a commit will be lost. This is one of

the few ways that Git can overwrite your work in an unrecoverable way. So, proceed with

caution. The hard reset is part of my daily Git routine, and it could also be part of yours;

just make sure that you do it deliberately. Figure 6-4 shows how the hard reset changes

both the stage, workspace, and HEAD.

Figure 6-4.  git reset --hard B updates HEAD, stage, and workspace to the
content of B

Chapter 6 Manipulating History

114

While the hard reset is considered off limits by some, it is part of my day-to-day

workflow. If we are disciplined around making commits often and take care in running

git status before we do a hard reset, we have a powerful and simple tool at our disposal.

I have many times seen developers accidentally messing up their local histories with

pulls when they did not mean to, or by having contaminated their master branch. The

way I do this personally is by avoiding pull in all but the simplest cases. Most often,

I will use git fetch to update my local cache and then use git reset --hard origin/

master to start from the most up-to-date scratch. When I have made certain to keep my

work on isolated branches, this is a safe command to run.

RESET EXERCISE

In this exercise, I will be going through the reset kata from the git-katas repository. This

exercise can be found in the git katas and is called reset. In this exercise, we use HEAD~1 to

refer to the parent of HEAD.

$ ls

1.txt 10.txt 2.txt 3.txt 4.txt 5.txt 6.txt 7.txt 8.txt 9.txt

$ git log --oneline

6742e05 (HEAD -> master) 10

76ac07a 9

c3e33b7 8

da46ca2 7

1d9b4de 6

21a5ff1 5

a7e2065 4

065ebe8 3

df9cfa3 2

89514e1 1

We note that we have a long history and a workspace containing a single file per commit.

We do not investigate, but it is safe to assume that each file is added in the corresponding

commit.

$ git reset --soft HEAD~1

$ git log --oneline

76ac07a (HEAD -> master) 9

Chapter 6 Manipulating History

115

c3e33b7 8

da46ca2 7

1d9b4de 6

21a5ff1 5

a7e2065 4

065ebe8 3

df9cfa3 2

89514e1 1

We note that the master branch is now pointing to the commit 9 rather than 10.

Investigating the workspace and git status shows us that indeed stage and workspace still

have the content from 10.

$ ls

1.txt 10.txt 2.txt 3.txt 4.txt 5.txt 6.txt 7.txt 8.txt 9.txt

$ git status

On branch master

Changes to be committed:

 (use "git restore --staged <file>..." to unstage)

 new file: 10.txt

Now, we can reset --mixed and the log shows us that we have again moved on.

$ git reset --mixed HEAD~1

$ git log --oneline

c3e33b7 (HEAD -> master) 8

da46ca2 7

1d9b4de 6

21a5ff1 5

a7e2065 4

065ebe8 3

df9cfa3 2

89514e1 1

$ ls

1.txt 10.txt 2.txt 3.txt 4.txt 5.txt 6.txt 7.txt 8.txt 9.txt

$ git status

On branch master

Chapter 6 Manipulating History

116

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 10.txt

 9.txt

nothing added to commit but untracked files present (use "git add" to track)

Looking in the workspace and checking the status shows us that we still have not changed our

workspace, but now 9.txt and 10.txt are untracked, as the stage matches the content in 8.

$ git reset --hard HEAD~1

HEAD is now at da46ca2 7

$ git log --oneline

da46ca2 (HEAD -> master) 7

1d9b4de 6

21a5ff1 5

a7e2065 4

065ebe8 3

df9cfa3 2

89514e1 1

Resetting hard continues the trend of updating HEAD. But now, we are resetting hard, so we

expect our workspace to change. Before moving on, I suggest you spend a few moments

pondering how you expect the workspace to look.

$ ls

1.txt 10.txt 2.txt 3.txt 4.txt 5.txt 6.txt 7.txt 9.txt

A peculiar thing is happening here. 8.txt is missing, but 9.txt and 10.txt are still present

in the workspace. This happens because 9 and 10 are untracked because of our previous

actions. As such, Git does not care about them at this time, and they will be left in the

workspace.

$ git status

On branch master

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 10.txt

 9.txt

nothing added to commit but untracked files present (use "git add" to track)

Chapter 6 Manipulating History

117

So now we have seen the three different modes of the git reset command. It can be daunting

and this kata is my favorite one because it encapsulates a lot of learning. This is why I really

recommend you go through this kata a few times, until you have built your reset intuition and

can wield git reset --hard like a ninja.

In this section, we have been using reset in all its modes for different purposes. One

important thing to remember is that no matter what, if you put your data in a commit,

you can restore it, even after a hard reset. I hope this section has shown you the power

that this safety can give you.

�Interactive Rebase
Some of the tricks we have been going through earlier can be used to manipulate history.

But the real powerful and granular way to approach tweaking your local history is with

the interactive rebase. Remember, if our history is local, we are free to tinker with it as

we want. This capability gives us the opportunity and responsibility to consider the

history we publish as a part of the delivery. The Git history that we deliver is also a form

of communication, and it should be chopped up in the right commits in the right order,

with good, clear commit messages. An interactive rebase is invoked by adding the flag

--interactive to the git rebase command, for example, git rebase --interactive master.

The best way to go about preparing your Git history is the interactive rebase.

Conceptually, you give Git a rebase target, which is what you want to rebase on top of.

Then, Git provides you with a rebase plan that it intends to execute. You can change this

plan, before Git executes it. This allows you to skip commits entirely, edit them, reorder

them, or squash them together. The plan takes the form of Action Sha. And deleting a

line will simply make the rebase skip that commit. If you do not edit the plan, it is the

same as leaving out the --interactive flag on the rebase command.

The most common actions are as follows:

–– Pick adds the commit at this point.

–– Squash melds this commit into the previous commit.

–– Edit stops to edit this commit.

–– Drop does not pick this commit.

The preceding actions and reordering are how interactive rebases are most

commonly used.

Chapter 6 Manipulating History

118

The following is an example rebase --interactive execution plan:

pick 8c1e4de file9

reword 921d2d0 file8

squash 3374035 file3

pick 5b3a4fc file4

pick f0d1634 file5

drop a7df72d file2

drop 3d7e5ea file6

pick 18bfdfe file7

The interactive rebase is perhaps the most powerful Git command, and almost

any Git task can be solved using this command. I hope that becoming aware of this

command will help you on your journey to always delivering a well-groomed history to

your collaboration partners, and your future self.

�Git Katas
To support the learning goals of this chapter, I suggest you do the following Git katas:

–– Revert.

–– Reset.

–– Reorder the history.

–– Then, I suggest you do the reset kata again; it is always a healthy

exercise to revisit 🙂.

�Summary
Manipulating the history is often proclaimed to be a big no-no in version control

because of traceability. But as long as we only rewrite history that is local or only has

been published to temporary branches, we have the obligation to make the history the

most usable it can be. Whether that is to squash multiple commits together or even split

commits into different bundles, it is all about considering the history you deliver as part

of your deliverable.

Remember, all the commands we have covered here are safe, and in the chapter on

Git internals, we will cover how to recover from accidents.

Chapter 6 Manipulating History

119
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_7

CHAPTER 7

Customizing Git
Git is an engineer’s tool, built by engineers. This means that while Git works a certain

way out of the box, the real power is unleashed when we start customizing Git to match

our way of working. With Git, we can do a lot in terms of simple configurations, creating

shortcuts for the tasks that we often use, or have repository-specific configurations to

help us manage the different contexts in which we work.

But Git does not stop there. Using hooks, we can inject scripts into the normal

workflow of Git operations, to better support our workflows, and using Git attributes

and filters, we can change the most basic operation of Git, how files are moved between

the repository and the workspace. In this chapter, we will go through everything from

the most basic configuration and alias to customization that changes some of the

fundamental behaviors of Git.

�Configuring Git
Git supports three levels of configurations: system, user, and repository local. In most

scenarios, we only use the user configurations. System configurations are rarely used and

could be used to some effect in multiuser environments to enforce some sane defaults.

Repository local configurations are something that we as ordinary Git users could use

to a much greater extent. Git applies configurations in the following order: system, user,

and local. Each grouping overwrites any duplicate entries from the previous. This is

illustrated in Figure 7-1.

https://doi.org/10.1007/978-1-4842-6270-2_7#DOI

120

Applying configurations in Git is done through the interface git config. If we add --list

to the command, we will read rather than set values. We use a key/value pair to set

a configuration. Using the flags --global and --system, we can set user or system

configurations, rather than the default repository local configurations. To set the pull

strategy to always rebase for the current user, we would run the command git

config --global pull.rebase true. If we rather wanted to set it for either the system,

we would use --system, or to put it in the repository configuration, drop the --global

flag. There are many configurations in Git, and we will not cover them here. Specific

configurations can be found in the Git documentation. We will however cover Git

configurations in the sense that they enable the next three sections.

Figure 7-1.  In the global configuration, user.name is set to briana, while in Repo
A, there is a .gitconfig file specifying user.name to be phillip. Thus, in global scope
and Repo B, user.name will resolve to briana, while it will resolve to phillip in Repo
A. In the system configuration, the default editor is set to emacs

Chapter 7 Customizing Git

121

GIT CONFIGURATION EXERCISE

In this exercise, we go through tweaking Git configurations. The repository for this exercise

can be found in the exercises delivered with the book in the folder chapter7/.

In this exercise, we have two repositories config-ACME and config-AJAX that we are going

to use to investigate how configurations overlap. First, we run the script setting up the exercise

and then we can move on. Note, you might have issues running this in a non-bash prompt.

$./config.sh

$ cd config

$ ls

config-ACME/ config-AJAX/

$ git config user.email

randomsort@gmail.com

Here, we note that even though we are not in a Git repository, we have access to the

configuration. Local configuration does not make any sense in this case. It is also unlikely that

you will get the same email returned as I do.

$ cd config-ACME

$ git config user.email

janedoe@acme

Entering the ACME repository, we can see that the user’s email is now different. We access the

local and global scope to verify the source of this configuration.

$ git config --local user.email

janedoe@acme

$ git config --global user.email

randomsort@gmail.com

We can also obtain the same information with the flag --show-origin.

$ git config --show-origin user.email

file:.git/config janedoe@acme

Now, we go to the other repository to see what values we get.

$ cd ..

$ cd config-AJAX/

$ git config user.email

Chapter 7 Customizing Git

122

randomsort@gmail.com

$ git config --local user.email

$ git config --show-origin user.email

file:C:/Users/Rando/.gitconfig randomsort@gmail.com

In this repository, we notice that the local user.email is not set, so we access the user defined

instead. We verify this using --show-origin.

The user.email configuration is a part of Git out of the box, but we can also add arbitrary

configurations for our own purposes. In these repositories, we are working with a custom

configuration that we have called practical-git. We can have multiple entries in our sections,

each with a name, but we are working with the company key.

cd ../config-ACME

$ git config practical-git.company

ACME

In the ACME repository company contains the value ACME, let’s check in AJAX.

$ cd ../config-AJAX/

$ git config practical-git.company

UNKNOWN

Here, we receive the value UNKNOWN, so let’s set the configuration to AJAX.

$ git config practical-git.company AJAX

$ git config practical-git.company

AJAX

We can still access the global scope.

$ git config --global practical-git.company

UNKNOWN

Now that we have contaminated your global configuration space with this section, we will

delete this section to remove this from your configuration file.

$ git config --remove-section --global practical-git

$ git config --get --global practical-git.company

This concludes the exercise. We have gone through the user and local scope and how you can

have different configurations in different repositories. This can be particularly useful if you use

the same computer to personal, open source, and company projects.

Chapter 7 Customizing Git

123

�Aliases
In Git, we can use aliases to construct shortcuts or extend Git’s functionality. We can

either use commands that are native to Git or invoke external commands. A frequent

target for aliases is making your logs aligned perfectly with your particular tastes. My

go-to log command is git log --oneline --decorate --graph --all which is a long

string to type, leaving ample room for typos and other errors. Commonly, I am unable

to spell --oneline correctly. In this scenario, I could create an alias for that command.

There is no direct alias command, but we can use git config to set aliases. Note that this

also means that we can have differently scoped aliases.

GIT ALIAS EXERCISE

In this exercise, we are going to set up some aliases for common tasks in our repository. The

repository for this exercise can be found in chapter7/aliases.

I often use a rather long variation of log to investigate repositories.

$ git log --decorate --oneline --graph --all

$ git log --decorate --oneline --graph --all

* b5566ae (myBranch) 7

* 506bb29 6

* f662f41 5

* bd90c39 (HEAD -> master) 5

* 55936c5 4

* 6519696 3

| * e645e36 (newBranch) 9

| * d5ed404 8

|/

* 0425411 (tag: originalVersion) 2

* 11fbef7 1

Of course, this is tedious and often leads to typos and my not remembering what parts I

actually want to add. So let us set up an alias for this command. We set up all the aliases in

the local repository so we do not leak into our global scope.

Chapter 7 Customizing Git

124

$ git config --local alias.l "log --oneline --decorate --graph --all"

This allows us to use git l as a shortcut to the longer variation.

$ git l

$ git log --decorate --oneline --graph --all

* b5566ae (myBranch) 7

* 506bb29 6

* f662f41 5

* bd90c39 (HEAD -> master) 5

* 55936c5 4

* 6519696 3

| * e645e36 (newBranch) 9

| * d5ed404 8

|/

* 0425411 (tag: originalVersion) 2

* 11fbef7 1

Already a bunch of keystrokes have been spared, and we are optimizing our way of working.

Next up, we will add a shortcut to running an external command. In this simple case, we will

simply execute ls -al, but it could be an arbitrarily complex command. Note that we add

an exclamation mark at the beginning of the alias to signal that it is not a Git command we

are running. This can be useful for extending Git. This is, for instance, how Git LFS started.

Consider if you would be better off doing a shell alias.

$ git config --local alias.ll '!ls -al'

$ git ll

total 10

drwxr-xr-x 1 joab 1049089 0 Jul 9 13:10 .

drwxr-xr-x 1 joab 1049089 0 Jul 9 13:10 ..

drwxr-xr-x 1 joab 1049089 0 Jul 9 13:14 .git

-rw-r--r-- 1 joab 1049089 155 Jul 9 13:10 gitconfig-alias

-rw-r--r-- 1 joab 1049089 25 Jul 9 13:10 test

So now we have augmented Git’s functionality ever so slightly.

We can all set up scripts to run as in the following section.

$ git config --local alias.helloworld '!f() { echo "Hello World"; }; f'

joab@LT02920 MINGW64 ~/repos/randomsort/practical-git/chapter7/aliases (master)

$ git helloworld

Hello World

Chapter 7 Customizing Git

125

And we can make our scripts take arguments.

$ git config --local alias.helloperson '!f() { echo "Hello, ${1}"; }; f'

$ git helloperson Phillip

Hello, Phillip

While these aliases are simple, they should show how powerful a tool they are and how you can

both make shortcuts for your often-used commands and extend Git with additional functionality.

If you have a common set of things you do in your workflow, you can create aliases for each of

these and share them with your team. It is a good way to align on your way of working.

As we have seen, we can quickly create shortcuts for custom commands or

even substitute complex parts of our workflow with an alias. Aliases are a massively

underused Git feature when it comes to ordinary developers. From now on, you are

obligated to create aliases for those things you find yourselves typing out often. You

might also once in a while need a complex piece of magic, and the next time you do so,

create an alias for it, so it will always be ready at hand.

�Attributes
Git attributes are a somewhat advanced part of Git’s feature set. It is one of the places

where we can fundamentally change the way Git writes objects in its internal database.

They are commonly used to enforce line endings or how to handle binary files, but can

also be used to convert to specific coding styles on check-in. As this is something that

happens client-side, if we truly want to enforce anything, we need to implement it server-

side or in automation engines.

The way we implement attributes is in a .gitignore-like fashion. We create

.gitattributes files, and in those, we list paths on which we set and unset attributes

on these particular paths. If, for instance, we want to let Git know that a particular XML

file is autogenerated and should never be merged like a text file, we can set the attribute

binary on it, leading to a .gitattributes like so:

autogeneratedFile.xml binary

Setting the -text attribute on a path stops Git from treating matching paths as text

files. The most common scenarios for tweaking existing Git behavior come from either

removing the text behavior as shown earlier or forcing Git to treat line endings in a

particular way.

Chapter 7 Customizing Git

126

We can also use Git attributes to add functionality that is disconnected from what Git

would otherwise do. We can do this by adding filters to our configs and reference those

filters from our .gitattributes. Git LFS (Git Large File Storage) uses this to handle large

files. Filters change how Git handles files going in and how of the repository. Git LFS

uploads the matching paths to a central binary repository manager and only saves the

reference in Git on check-in. On checkout, Git LFS resolves those paths and downloads

the binary files. Git LFS seemingly allows us to store large binary files in Git, which Git is

notoriously bad at handling. This reduction in repository size comes at the cost of being

able to work fully offline. Not being able to work entirely distributed can be a problem if

connectivity is a sparse resource in your context. This filter workflow is shown in Figure 7-2.

Figure 7-2.  The clean filter applies when going from the working directory to the
staging area and the other direction for smudge

In my experience, Git attributes are rarely necessary unless you have some

complexity in your context, such as multiple different platforms on which you check

out code using tools that are fragile when it comes to line endings. Of course, the right

solution is to fix the fragility or complexity, but until then, Git attributes can help work

around the problems.

Chapter 7 Customizing Git

127

ATTRIBUTES

In this exercise, we are going to go through a previous kata that generated a merge conflict for

us and investigate how we can use .gitattributes to change what happens. In this exercise, we

are going to go through the kata merge-mergesort, because we know that will make a merge

conflict happen and we can change the outcome of this using Git attributes.

$ cd merge-mergesort

$. setup.sh

Now, we are in the exercise and we can force the merge conflict by merging in the branch

Mergesort-Impl.

$ git merge Mergesort-Impl

Auto-merging mergesort.py

CONFLICT (content): Merge conflict in mergesort.py

Automatic merge failed; fix conflicts and then commit the result.

$ git status

On branch master

You have unmerged paths.

 (fix conflicts and run "git commit")

 (use "git merge --abort" to abort the merge)

Unmerged paths:

 (use "git add <file>..." to mark resolution)

 both modified: mergesort.py

no changes added to commit (use "git add" and/or "git commit -a")

$ cat mergesort.py

from heapq import merge

def merge_sort2(m):

 """Sort list, using two part merge sort"""

 if len(m) <= 1:

 return m

 # Determine the pivot point

 middle = len(m) // 2

 # Split the list at the pivot

<<<<<<< HEAD

Chapter 7 Customizing Git

128

 left = m[:middle]

 right = m[middle:]

=======

 right = m[middle:]

 left = m[:middle]

>>>>>>> Mergesort-Impl

 # Sort recursively

 right = merge_sort2(right)

 left = merge_sort2(left)

 # Merge and return

 return list(merge(right, left))

def merge_sort4(m):

 """Sort list, using four part merge sort"""

 if len(m) <= 4:

 return sorted(m)

 # Determine the pivot point

 middle = len(m) // 2

 leftMiddle = middle // 2

 rightMiddle = middle + leftMiddle

 # Split the list at the pivots

 first = m[:leftMiddle]

 second = m[leftMiddle:middle]

 third = m[middle:rightMiddle]

<<<<<<< HEAD

 last = m[rightMiddle:]

=======

 fourth = m[rightMiddle:]

>>>>>>> Mergesort-Impl

 # Sort recursively

 first = merge_sort4(first)

 second = merge_sort4(second)

 third = merge_sort4(third)

<<<<<<< HEAD

 last = merge_sort4(last)

Chapter 7 Customizing Git

129

 # Merge and return

 return list(merge(first, second, third, last))

=======

 fourth = merge_sort4(fourth)

 # Merge and return

 return list(merge(first,second, third, fourth))

>>>>>>> Mergesort-Impl

In the preceding code, we notice that there are merge markers. This would have been bad

if it had been an autogenerated file or a file where merging doesn’t make any sense. So we

abandon the merge.

$ git merge --abort

We then make Git consider mergesort.py a binary file, not to be automatically

merged. We then repeat the merge.

$ echo "mergesort.py binary" > .gitattributes

$ git merge Mergesort-Impl

warning: Cannot merge binary files: mergesort.py (HEAD vs. Mergesort-Impl)

Auto-merging mergesort.py

CONFLICT (content): Merge conflict in mergesort.py

Automatic merge failed; fix conflicts and then commit the result.

$ cat mergesort.py

from heapq import merge

def merge_sort2(m):

 """Sort list, using two part merge sort"""

 if len(m) <= 1:

 return m

 # Determine the pivot point

 middle = len(m) // 2

 # Split the list at the pivot

 left = m[:middle]

 right = m[middle:]

 # Sort recursively

 right = merge_sort2(right)

 left = merge_sort2(left)

Chapter 7 Customizing Git

130

 # Merge and return

 return list(merge(right, left))

def merge_sort4(m):

 """Sort list, using four part merge sort"""

 if len(m) <= 4:

 return sorted(m)

 # Determine the pivot point

 middle = len(m) // 2

 leftMiddle = middle // 2

 rightMiddle = middle + leftMiddle

 # Split the list at the pivots

 first = m[:leftMiddle]

 second = m[leftMiddle:middle]

 third = m[middle:rightMiddle]

 last = m[rightMiddle:]

 # Sort recursively

 first = merge_sort4(first)

 second = merge_sort4(second)

 third = merge_sort4(third)

 last = merge_sort4(last)

 # Merge and return

 return list(merge(first, second, third, last))

As we can see, we no longer have merge markers in our file but rather have one large self-

contained file. We can use git checkout with the flags --ours and --theirs to establish either

the incoming file or the one already present in our branch.

$ git checkout --ours -- mergesort.py

$ git add mergesort.py

$ git commit -m “merge”

$ git status

On branch master

Chapter 7 Customizing Git

131

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 .gitattributes

nothing added to commit but untracked files present (use "git add" to track)

So we resolved the merge nicely. If we already know which source we want if there are any

conflicts, we can specify that as a merge strategy as a flag to the merge command. First, we

reset to the previous stage and then repeat the merge with the strategy flag.

$ git reset --hard HEAD~1

HEAD is now at b4cac37 Mergesort implemented on master

$ git merge --strategy ours Mergesort-Impl

Merge made by the 'ours' strategy.

This exercise showed a simple way to use Git attributes to change the way Git works.

There are more advanced things to do with Git attributes, but they are beyond the scope

of this book.

�Diff and Merge Tools
While the command-line or IDE extensions are enough for most use cases, there are

situations where your domain sets you up for some challenging diffs and merges.

If this is the case, we can configure Git to use external tools to handle this. Perhaps

unsurprising, we set up the tools in git config and can then invoke them through the

command line. The process is similar for merge and diff tools. If we have configured

a diff tool, we can invoke it through git difftool, and if we have configured a merge

tool, the command is git mergetool. There are both free, open source, and proprietary

merge tools available. We are using the open source tool meld in the exercise, while a

popular paid tool is BeyondCompare. Your team or department might have a preferred

tool. If so, it is a good idea to align on that.

Chapter 7 Customizing Git

132

MERGE TOOL

This exercise assumes that you have installed the meld merge tool (meldmerge.com) and that

you are on Windows. If you are on a different platform, I recommend you follow the platform-

specific guides for configuring meld and mergetools, but you will likely have an easier time

than those on Windows. First, we will configure meld as the mergetool, and then we will revisit

the merge-mergesort kata to see how the merge looks when we use a merge tool to resolve

the conflict.

When I installed Meld, it wound up in the path C:\Program Files (x86)\Meld\meld.exe, so I want

to point Git to that.

$ git config --global mergetool.meld.path 'C:\Program Files (x86)\Meld\Meld.exe'

Then, we can tell Git to use Meld as mergetool and difftool.

$ git config --global merge.tool meld

$ git config --global diff.tool meld

So let’s go back to the merge-mergesort kata. Remember to run the setup

script again to get a clean kata.

$ pwd

$. setup.sh

$ git diff Mergesort-Impl

diff --git a/mergesort.py b/mergesort.py

index 9de927a..646b20f 100644

--- a/mergesort.py

+++ b/mergesort.py

@@ -9,8 +9,8 @@ def merge_sort2(m):

 middle = len(m) // 2

 # Split the list at the pivot

- right = m[middle:]

 left = m[:middle]

+ right = m[middle:]

 # Sort recursively

 right = merge_sort2(right)

@@ -33,13 +33,13 @@ def merge_sort4(m):

 first = m[:leftMiddle]

 second = m[leftMiddle:middle]

Chapter 7 Customizing Git

133

 third = m[middle:rightMiddle]

- fourth = m[rightMiddle:]

+ last = m[rightMiddle:]

 # Sort recursively

 first = merge_sort4(first)

 second = merge_sort4(second)

 third = merge_sort4(third)

- fourth = merge_sort4(fourth)

+ last = merge_sort4(last)

 # Merge and return

- return list(merge(first,second, third, fourth))

+ return list(merge(first, second, third, last))

This diff could be useless for more complex products. And we can run meld using the difftool

command.

$ git difftool Mergesort-impl

Now, we have a more visual view.

Let’s try to move on with the merge.

$ git merge Mergesort-Impl

Auto-merging mergesort.py

CONFLICT (content): Merge conflict in mergesort.py

Chapter 7 Customizing Git

134

Automatic merge failed; fix conflicts and then commit the result.

$ git mergetool

Merging:

mergesort.py

Normal merge conflict for 'mergesort.py':

 {local}: modified file

 {remote}: modified file

So, we get a visual way of resolving our merges, rather than manually setting the state of the

conflicted path.

This can be useful if you work with particular file types or have complex merge conflicts,

but I rarely encounter an actual need for these tools in practice. In most cases, the merge

conflicts do not appear, and when they do, IDEs come with excellent tool facilitation out

of the box.

Chapter 7 Customizing Git

135

�Hooks
The final configuration option that we cover is Git hooks. Hooks are small shell scripts

that allow us to inject functionality in the flow of Git actions. Hooks can help prevent us

doing things that we shouldn’t or prepare data for Git.

Hooks are available server-side and client-side. In this book, we only cover client-

side hooks, but if you ever notice that a server rejects a push because of non-fast-forward

merges, you have seen a server-side hook in action. Other often-used server-side hooks

check for a referenced issue or prevent you from accidentally adding large files to your

repository.

When it comes to client-side hooks, the same phrase that I’ve used many times is still

valid. You can only support workflows client-side if you want to enforce anything you

have to do in server-side. Hooks reside in the folder .git/hooks, and when you git init

a repository, there is a set of sample hooks that you can check out to see examples of

Git hooks in action. If hooks exit with a nonzero exit code, the current action is aborted.

We use this in the next exercise to prevent commits on the master branch using the

pre-commit hook. In the case of the prepare-commit-msg hook, we can both check for

something, that is, the presence of curse words in the commit message or the lack of a

referenced issue ID. Thus, hooks help us do the right thing, and through the path of least

resistance, we improve. We can, of course, circumvent this locally. Note that hooks are

not shared across distributed repositories as this would pose a security issue.

GIT HOOK EXERCISE

In this exercise, we have gone through how to implement a simple hook helping us avoid

a common mistake and how to circumvent that hook when we need to. This repository for

this exercise can be found in the folder chapter7/pre-commit-hook. If you are on a Mac

and experience issues, you can look at this Stack Overflow post for assistance: https://

stackoverflow.com/a/14219160/28376.

$ ls

pre-commit*

We can see there is a single file here, but let’s first check that we are able to create a commit

in normal fashion.

$ echo "test" > testfile.txt

Chapter 7 Customizing Git

https://stackoverflow.com/a/14219160/28376
https://stackoverflow.com/a/14219160/28376

136

$ git add testfile.txt

$ git commit -m "Initial commit"

[master (root-commit) 8d6ae42] Initial commit

 1 file changed, 1 insertion(+)

 create mode 100644 testfile.txt

Nothing surprising here, we could stage a file and create a commit. So let’s look at the content

in the file pre-commit. You do not have to be a shell ninja to be able to discern the structure

of this script. We exit with an error with the current branch is master; otherwise, we exit with

zero. There are a few echo statements to let us see the control flow.

$ cat pre-commit

#!/bin/bash

echo "Running Hook"

if [`git rev-parse --abbrev-ref HEAD` = master]

then

 echo "You can't commit to master"

 exit 1

else

 echo "Commit freely on this branch"

fi

Hooks are active by being in the .git/hooks folder and having a name matching when it

should run. Our hook is called pre-commit, so it will run before a commit is created.

$ cp pre-commit .git/hooks

With our hook now in place, we will try to see if we can create an additional commit.

$ echo "more content" >> testfile.txt

$ git commit -am "Add more content"

Running Hook

You can't commit to master

Our commit gets rejected, so we will make another branch and create the commit here.

$ git checkout -b other

Switched to a new branch 'other'

$ git commit -am "Add more content"

Running Hook

Chapter 7 Customizing Git

137

Commit freely on this branch

[other ec31264] Add more content

 1 file changed, 1 insertion(+)

Our hook runs, but as we are on a different branch, the commit is allowed through. This can be

useful to way those oops moments.

But let us say that we really do want to commit on master, even though there is a hook

preventing us from doing so. Let’s go back to master and create a commit there.

$ git checkout master

$ echo "some items of interest" > test

$ git add test

$ git commit -m "on master"

Running Hook

You can't commit to master

Our hook is still working and stopping us from committing to master. However, we can prevent

the hook from running using the flag --no-verify.

$ git commit --no-verify -am "on master"

[master c6d4486] on master

 1 file changed, 1 insertion(+)

 create mode 100644 test

This is the reason that I have been saying that we need to handle enforcement server-side.

One might argue that --no-verify is a bad practice, or couldn’t we just disable it? But consider

that the hooks reside in the local repository and there is nothing hindering the user from

simply deleting the hook altogether.

At least --no-verify provides us with a proper way to skip the hook.

�Katas
To support the learning goals in this chapter, I suggest you practice the following katas:

–– Git-attributes

–– Pre-push

To supplement this, you can go into any local Git repository and look at the sample

hooks in the .git/hooks folder.

Chapter 7 Customizing Git

138

�Summary
In this chapter, we covered many different ways that you can customize your Git

installation to work more efficiently and support arbitrary workflows and constraints.

We covered how config files allow us to have global, user, and repository local

configurations and how we could use those configurations to extend Git functionality.

We built our own shortcuts and called external commands using aliases. We

investigate Git attributes and how we could use them to both tweak Git’s default

performance and completely change the base functionality of Git. We covered how you

can get a custom merging experience using mergetools. Finally, we covered how we can

interfere in the standard Git Flow using hooks to facilitate our workflows.

Chapter 7 Customizing Git

139
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_8

CHAPTER 8

Additional Git Features
In this chapter, I have a lovely amalgam of Git features for you – features that I could not

find any place to put. The reason they ended up here might be that where they would

have originally fit, we had not established the right mental models, or that they are

slightly tangential to the rest of the content in this book. These are features that might

help you in your work but should not come into play on an everyday basis. Being aware

of their existence might key you in for those dire situations where they are just the right

thing for you. We cover figuring out what specific commit introduced a discrepancy

using Git bisect. We use Git Submodules to manage dependencies between repositories.

And we are going to use Git Large File Storage or Git LFS for short. If you made it this

far, congratulations. You have completed the Practical Git curriculum and mastered the

foundations. The rest is the icing on the cake.

�Git Bisect
In a perfect world, we have quick tests that we can run on every commit, letting us know

if we introduce an error, breaking existing functionality. Unfortunately, this seems to

be a utopic vision. In reality, we seldom have perfect tests, and even when we do have

extensive test coverage, there are no guarantees that no bugs slip through our net. It

can also be a nonbreaking change, such as an element changing the color, which would

have been hard to test for in a meaningful way. In these cases, we can revert the change

manually, to remedy the unwanted change. But this is both tedious and error-prone.

Plus, there might be a good reason for this change to be valid. As such, it is valuable to be

able to find the commit that introduced the change.

The most straightforward strategy is to start from the most recent commit that

was in a healthy state and check out commits one at a time. For each commit, poke

around and figure out if it was the commit that introduced the test. At some point, we

figure out the commit that introduced the breaking change, and we can revert that

https://doi.org/10.1007/978-1-4842-6270-2_8#DOI

140

commit. If we are lucky, we have tests that we can run in each commit to verify the

quality of the given commit. Worst-case scenario, we need to check all of the commits

between the good and the bad commit, and it is a tiresome and arduous task. This

linear strategy is in Figure 8-1. There can be small improvements such as starting

from the newest commit if you believe it was a recent change you are looking for, but

nevertheless, it might take a long time.

Figure 8-1.  Searching through history in a linear fashion

Figure 8-2.  Jumping through the history like a binary search

We are fortunate that Git provides us with a better way of finding the culprit. You

might have heard of binary search. Binary is a superior approach to finding an element in

a sorted list. As we are searching through time, we can consider our commit history to be

a sorted list. Binary search is recursively looking at the middle element to determine if the

desired element is in the left or right half of the list. When we keep doing this, it quickly

yields the desired element. The performance is particularly attractive for long histories.

Looking through 1000 elements linearly takes a long time and has a horrible worst case

of going through all the elements. Using binary search, we can guarantee that we have

found the element after at most 11 iterations. This is a huge difference! Figure 8-2 shows

jumping through history to find the breaking change.

It is tedious to keep track of where we are and what commit to investigate. Git

instruments this with the command bisect.

Git bisect works by marking a commit as being bad and one as being good. Then,

bisect will iteratively check out commits that we can mark as either good or bad, and

bisect will continue until it is unambiguous which commit was the first bad one.

Chapter 8 Additional Git Features

141

GIT BISECT EXERCISE

In this exercise, we will go through the bisect kata. It can be found in the katas repository in

the bisect folder. In this exercise, we are left with 100 commits and changes in 50 files. It’s

no easy task to figure out when this broke! Fortunately, we have a script that can verify if a

commit is broken, so we will use bisect to move through history.

$. setup.sh

<Truncated>

$ git bisect start

After having started the bisection, we need to mark a commit as good and one as bad. This

sets the endpoints for our search. We find the tag that we want to mark as good and mark

HEAD as bad.

$ git tag

initial-commit

$ git bisect good initial-commit

$ git bisect bad

Bisecting: 49 revisions left to test after this (roughly 6 steps)

[9d7c0188ea01453068cab551cd07bc2f52cb4a44] 50

Now that we have marked the endpoints for the search, Git checks out the first commit that

we need to verify. We use the script test.sh in the exercise folder to verify the commit.

Depending on the test outcome, we mark the commit as either good or bad and continues

verifying the commits that Git presents us with.

$./test.sh

test failed

$ git bisect bad

Bisecting: 24 revisions left to test after this (roughly 5 steps)

[7ff73ce2a82182eaa46e7239e093b976b851c2fc] 25

$./test.sh

test failed

$ git bisect bad

Bisecting: 12 revisions left to test after this (roughly 4 steps)

[1bb261b8f8d9549430af7c93e27c54a25abee63d] 12

Chapter 8 Additional Git Features

142

$./test.sh

test passed

$ git bisect good

Bisecting: 6 revisions left to test after this (roughly 3 steps)

[c3b042dd17d10492c94d2544ec36982637efef36] 18

$./test.sh

test passed

$ git bisect good

Bisecting: 3 revisions left to test after this (roughly 2 steps)

[a604e7c7d423c6271925d1f7431cdbaa0c069a5a] 21

$./test.sh

test passed

$ git bisect good

Bisecting: 1 revision left to test after this (roughly 1 step)

[878630d3e906eb6e262f58d16b5611c79313ba91] 23

$./test.sh

test failed

$ git bisect bad

Bisecting: 0 revisions left to test after this (roughly 0 steps)

[819fa50314086a1e031427704e7bbc9419375cfd] 22

$./test.sh

test failed

$ git bisect bad

819fa50314086a1e031427704e7bbc9419375cfd is the first bad commit

commit 819fa50314086a1e031427704e7bbc9419375cfd

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sun Aug 2 21:15:32 2020 +0200

 22

 22.txt | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 22.txt

Chapter 8 Additional Git Features

143

While this was tedious, we unambiguously found the bad commit and with a good guarantee

on the maximum amount of commits that we need to test.

Fortunately, because we were provided with a test, we can do this even more efficiently using

git bisect run.

$ git bisect reset

Previous HEAD position was 819fa50 22

Switched to branch 'master'

$ git bisect start

$ git bisect good initial-commit

$ git bisect bad

Bisecting: 49 revisions left to test after this (roughly 6 steps)

[9d7c0188ea01453068cab551cd07bc2f52cb4a44] 50

After the Git provides us with the initial commit to verify, rather than doing so manually, we

pass the test script to bisect.

$ git bisect run './test.sh'

running ./test.sh

test failed

Bisecting: 24 revisions left to test after this (roughly 5 steps)

[7ff73ce2a82182eaa46e7239e093b976b851c2fc] 25

running ./test.sh

test failed

Bisecting: 12 revisions left to test after this (roughly 4 steps)

[1bb261b8f8d9549430af7c93e27c54a25abee63d] 12

running ./test.sh

test passed

Bisecting: 6 revisions left to test after this (roughly 3 steps)

[c3b042dd17d10492c94d2544ec36982637efef36] 18

running ./test.sh

test passed

Bisecting: 3 revisions left to test after this (roughly 2 steps)

[a604e7c7d423c6271925d1f7431cdbaa0c069a5a] 21

running ./test.sh

test passed

Bisecting: 1 revision left to test after this (roughly 1 step)

Chapter 8 Additional Git Features

144

[878630d3e906eb6e262f58d16b5611c79313ba91] 23

running ./test.sh

test failed

Bisecting: 0 revisions left to test after this (roughly 0 steps)

[819fa50314086a1e031427704e7bbc9419375cfd] 22

running ./test.sh

test failed

819fa50314086a1e031427704e7bbc9419375cfd is the first bad commit

commit 819fa50314086a1e031427704e7bbc9419375cfd

Author: Johan Abildskov <randomsort@gmail.com>

Date: Sun Aug 2 21:15:32 2020 +0200

 22

 22.txt | 0

 1 file changed, 0 insertions(+), 0 deletions(-)

 create mode 100644 22.txt

bisect run success

Using run, we found the offending commit easily. In many cases, it will pay off to have. This

exercise showed how we could smoothly go about figuring out the particular commit that

introduced a given change or bug.

Git bisect is an excellent feature, but it requires you to care about the history that

you create. If you create bundle too many changes into a single commit, then it will still

be difficult to figure out what particular part of that commit introduced the bad change.

Ideally, you would be able to revert the bad commit as the change was atomic. Git bisect

also is easier to work with when you do not have many merges and levels of branches. As

such it can be easier to work with bisect, if you are using rebase, rather than merges.

�Git Submodules
One of the general problems in developing software is handling dependencies and

using code from other people. Whether this code is open sourced and publicly available

or proprietary, how you get that code into your workspace in a traceable manner is a

challenge. Depending on the ecosystem of your programming language of choice, there

are preferred solutions. Python has pip packages, JavaScript npm, and .NET NuGet

packages, and many languages have their own. The native package management should

Chapter 8 Additional Git Features

145

be the preferred solution for sharing code across code bases. In some scenarios, such

a solution might not present itself. C and C++ do not come with a native dependency

management solution, for instance. In these scenarios, we can turn to Git Submodules

to share code across code bases. As Git is language-agnostic, it should be our fallback

solution rather than the default. Defaulting to Git Submodules for dependency

management causes you to miss out on the benefits of the integrated ecosystem.

With Git Submodules, we add folders whose content should come from a different

repository. Git Submodules uses a file called .gitmodules to keep track of paths that are

submodules. This allows Git to restore the content of that folder to what we remote we

have added. If, for instance, we want to add the Git katas repository as a dependency in

our repository, we can run the command git submodule add git@github.com:eficode-

academy/git-katas katas. After running this command, the folder katas contains the

content of the master branch on the kata repositorycc. If we look at the content of

.gitmodules, it looks as follows.

Listing 8-1.  Content of .gitmodules after adding submodule

$ cat .gitmodules

[submodule "katas"]

 path = katas

 url = git@github.com:eficode-academy/git-katas

Note that this is very different from putting the katas repository manually inside

another Git repo, which is something we should never do. The .gitmodules file allows

us to reestablish this dependency in other clones of our remote. Git Submodule

configuration lives in .git/config, but as that is not shared across remotes, we need to

initialize submodules to re-create the configuration from .gitmodules on new clones.

This initialization is either done by git submodule init, followed by git submodule

update, or git submodule update --init. The latter is preferred unless you need

to customize submodule locations. Init restores configuration to .git/config, while

update checks out the content to the path.

Note O ne of the challenges of working with submodules is keeping track on
which project you are currently trying to make a change in. Is this a change on
the outer or inner project? There is no way to help with this, other than being
deliberate about what changes belong where and focusing while delivering.

Chapter 8 Additional Git Features

146

SUBMODULE EXERCISE

In this exercise, we go through the Git Submodule kata. We show how to add submodules and

the workflow around delivering changes to both outer and inner repositories. The submodule

kata is in the katas in the folder submodules/.

First, we set up the exercise.

cd submodules/

$ ls

README.md setup.ps1 setup.sh

$. setup.sh

<Truncated>

$ ls

component product remote

We note three folders, each a Git repository. We have the product that we are building. The

folder remote represents the presence of the component on a repository manager like GitHub.

The component folder represents the local working folder of those developing the submodule.

The first thing we do is add the component to our product.

$ cd product/

/product$ ls

product.h

/product$ git submodule add ../remote include

Cloning into '/home/randomsort/repos/git-katas/submodules/exercise/product/

include'...

done.

/product$ ls

include product.h

/product$ git status

On branch master

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: .gitmodules

 new file: include

Chapter 8 Additional Git Features

147

We observe that the two paths have changed: the .gitmodules file that keeps track of

submodules and the path where we have added the submodule.

Inside include, the content of the module is present.

/product$ ls include

component.h

/product$ cd include

/product/include$ git status

On branch master

Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

The status of the submodule is clean, even though our root repository is dirty. This is one of the

things that can be tricky with submodules.

/product/include$ cd ..

/product$ git diff --cached

diff --git a/.gitmodules b/.gitmodules

new file mode 100644

index 0000000..79d5c92

--- /dev/null

+++ b/.gitmodules

@@ -0,0 +1,3 @@

+[submodule "include"]

+ path = include

+ url = ../remote

diff --git a/include b/include

new file mode 160000

index 0000000..3aecaf4

--- /dev/null

+++ b/include

@@ -0,0 +1 @@

+Subproject commit 3aecaf441cca7d98cbec906bf7bf61902fcd41ee

The diff in the product repository matches what we expect based on the previous step, except

for the +Subproject commit <hash> line.

Chapter 8 Additional Git Features

148

/product$ cat .gitmodules

[submodule "include"]

 path = include

 url = ../remote

However, when we look in the .gitmodules file, there is no information letting us know

which commit we have added to our product repository. This is because Git is storing that

object reference directly in its internal database as a commit listing in its tree object. We cover

how commits are constructed and how trees look like in the next chapter.

Now, we commit our change to the product repository, namely, adding the submodule.

/product$ git commit -m "Add component"

[master f7a101d] Add component

 2 files changed, 4 insertions(+)

 create mode 100644 .gitmodules

 create mode 160000 include

/product$ cd ..

Let’s move on and create a change inside of the submodules remote. As the submodule itself

is a completely ordinary Git repository, nothing new is going on here.

$ cd component

/component$ ls

component.h

/component$ git status

On branch master

Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

/component$ echo "important change" > file

/component$ git add file

/component$ git commit -m "important change"

[master 19451c0] important change

 1 file changed, 1 insertion(+)

 create mode 100644 file

/component$ git status

On branch master

Your branch is ahead of 'origin/master' by 1 commit.

 (use "git push" to publish your local commits)

Chapter 8 Additional Git Features

149

nothing to commit, working tree clean

/component$ git push

Counting objects: 3, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 298 bytes | 149.00 KiB/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To /home/randomsort/repos/git-katas/submodules/exercise/remote

 3aecaf4..19451c0 master -> master

/component$ cd ..

We published the change to the remote. Let’s check how that looks from the perspective of the

product.

$ cd product

/product$ git status

On branch master

nothing to commit, working tree clean

Our master branch is clean, so we do not detect a change of the submodule.

/product$ git submodule foreach 'git status'

Entering 'include'

On branch master

Your branch is up to date with 'origin/master'.

nothing to commit, working tree clean

Even going through the submodules and running status in there does not help us. We need to

pull inside of the submodule.

/product$ cd include

/product/include$ git pull

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (3/3), done.

From /home/randomsort/repos/git-katas/submodules/exercise/remote

 3aecaf4..19451c0 master -> origin/master

Updating 3aecaf4..19451c0

Fast-forward

Chapter 8 Additional Git Features

150

 file | 1 +

 1 file changed, 1 insertion(+)

 create mode 100644 file

/product/include$ ls

component.h file

While this works and we could have used git submodule foreach to iterate over each of

our repositories, it becomes less transparent what changes we are pulling into our product.

/product/include$ cd ..

/product$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: include (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

After updating the submodule, we can see that there is a change from the vantage point of the

product. With git diff, we can see the change from tracking one commit to another. We commit

that change to our product.

/product$ git diff

diff --git a/include b/include

index 3aecaf4..19451c0 160000

--- a/include

+++ b/include

@@ -1 +1 @@

-Subproject commit 3aecaf441cca7d98cbec906bf7bf61902fcd41ee

+Subproject commit 19451c07652a282a71eeb7d953d9d807c66284a8

/product$ git add .

/product$ git commit -m "Update include"

[master ebb028e] Update include

 1 file changed, 1 insertion(+), 1 deletion(-)

Chapter 8 Additional Git Features

151

With the product thus updated, we can take advantage of having the submodule embedded as

a proper Git repository inside of our product. This is a powerful feature as we can develop our

submodule in the context of the product that uses it. It has the disadvantage that it becomes

more difficult to discern when you are working in which repository, and if a submodule is

used in multiple products, it is unlikely to be a good idea to develop in the context of a single

specific product.

/product$ cd include/

/product/include$ ls

component.h file

/product/include$ git mv file file.txt

/product/include$ git status

On branch master

Your branch is up to date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 renamed: file -> file.txt

/product/include$ git commit -m "Add file extension to file"

[master d9ba324] Add file extension to file

 1 file changed, 0 insertions(+), 0 deletions(-)

 rename file => file.txt (100%)

/product/include$ git push

Counting objects: 2, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (2/2), 285 bytes | 285.00 KiB/s, done.

Total 2 (delta 0), reused 0 (delta 0)

To /home/randomsort/repos/git-katas/submodules/exercise/remote

 19451c0..d9ba324 master -> master

We have delivered a change to the submodule from the Git repository embedded in our

product. Next, we clone a second product from the product folder to show how it looks if you

are not adding submodules, but rather cloning a repository that is already using submodules.

/product/include$ cd ..

/product$ cd ..

$ git clone product product_alpha

Chapter 8 Additional Git Features

152

Cloning into 'product_alpha'...

done.

$ cd product_alpha/

/product_alpha$ ls

include product.h

/product_alpha$ ls include/

In our freshly cloned repository, the include folder exists, but it is empty. The following log

statement shows that we do indeed have the newest commit on the project repository. So the

issue must be with the submodule itself.

/product_alpha$ git log

commit ebb028e42833ba80df82f1694257e646d26436d1 (HEAD -> master, origin/

master, origin/HEAD)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Tue Aug 4 20:57:06 2020 +0200

 Update include

commit f7a101df8286b36cd2abee11cd878306c5b89a7b

Author: Johan Abildskov <randomsort@gmail.com>

Date: Tue Aug 4 20:50:24 2020 +0200

 Add component

commit 53e5bf7ed2455e9aa578ff1f9a7bdd7a09eb4c21

Author: Johan Abildskov <randomsort@gmail.com>

Date: Tue Aug 4 20:47:44 2020 +0200

 Touch product header

After cloning a repository using submodules, we first need to init the submodules. Initialization

is required to populate the local repository configuration correctly.

/product_alpha$ git submodule init

Submodule 'include' (/home/randomsort/repos/git-katas/submodules/exercise/

remote) registered for path 'include'

/product_alpha$ ls include

The still frustratingly empty include directory tells us that it is not enough to initialize the

submodule. We use update to check out the submodule to the relevant path.

Chapter 8 Additional Git Features

153

/product_alpha$ git submodule update

Cloning into '/home/randomsort/repos/git-katas/submodules/exercise/product_

alpha/include'...

done.

Submodule path 'include': checked out

'19451c07652a282a71eeb7d953d9d807c66284a8'

/product_alpha$ ls include

component.h file

So we did not get the newest change on the submodule, as we have file rather than file.txt.

/product_alpha$ cd ..

$ cd product

/product$ git status

On branch master

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working directory)

 modified: include (new commits)

no changes added to commit (use "git add" and/or "git commit -a")

As we can see, just because we made the change to the submodule in the context of the

product is no guarantee that the product reflects this change. This trap is another caveat

using submodules. People that have experience with other version control systems such

as ClearCase might have an intuition that we can deliver a single change atomically across

multiple repositories, but that is not possible in Git. While it might not feel like it, changes in

the submodule and in the products using the submodule are completely independent and

cannot be done as a transaction.

So let us commit the change to the submodule version in the product repository.

/product$ git add .

/product$ git commit -m "update submodule"

[master 6102bac] update submodule

 1 file changed, 1 insertion(+), 1 deletion(-)

/product$ cd ..

$ cd product_alpha/

/product_alpha$ git submodule update

/product_alpha$ git pull

Chapter 8 Additional Git Features

154

remote: Counting objects: 2, done.

remote: Compressing objects: 100% (2/2), done.

remote: Total 2 (delta 0), reused 0 (delta 0)

Unpacking objects: 100% (2/2), done.

From /home/randomsort/repos/git-katas/submodules/exercise/product

 ebb028e..6102bac master -> origin/master

Updating ebb028e..6102bac

Fast-forward

 include | 2 +-

 1 file changed, 1 insertion(+), 1 deletion(-)

/product_alpha$ ls include

component.h file

/product_alpha$ git submodule update

Submodule path 'include': checked out

'd9ba3247bb58bfc4f36ed3d6fa60781b0b32a5e1'

/product_alpha$ ls include/

component.h file.txt

Here, we again notice the two-step approach to getting a change from a submodule. First, we

update the reference to the submodule, and then we make the local path reflect the content of

the submodule at that reference.

This exercise walked you through working with submodules. As you can see, the tooling is

quite easy to use. The difficulties with submodules come from nontrivial usage where it can

become hard to keep track of what is going on.

This section has covered Git Submodules, so you now should have an idea about how they

work and what you can do with them. I still recommend going with the native dependency

management tooling if there is one available for the framework that you are using.

�Git Large File Storage
Git is excellent at managing text files, which is the polite way of saying that Git is not very

suited at storing binary files. Large binary assets, in particular, are taxing in Git. This is

caused by Git’s offline capabilities, where the distributed nature of Git puts all versions

in each of our clones. This can cause a lot of bandwidth and storage usage, which might

make Git slow to work with.

Chapter 8 Additional Git Features

155

My first take when people want to store binary assets in Git is to tell them not to. In

the general case, storing binary assets in Git is a workaround rather than a real solution.

A proper artifact management strategy together with a binary repository manager,

such as JFrog Artifactory or Sonatype Nexus, usually is the best solution. There can

be scenarios where it is useful to save binary assets in Git, and if this is necessary, in

my opinion, the only right way to do this is using Git LFS. The primary cost in terms of

workflow of using Git LFS is that you no longer can work truly offline. Depending on

connectivity and size of binary assets, this is a smaller problem today than it was five or

ten years ago.

These days Git LFS is bundled with most installers. You can test if you have it installed

with the command git lfs. If it doesn’t error, you have Git LFS on your computer. If you

lack Git LFS, you can download and install it from https://git-lfs.github.com/.

�Implementation
Although invisible to daily users, I believe understanding the shape of the Git LFS

implementation helps with the intuition around what parts of your workflow will have

changed fundamentally from a non-Git LFS workflow. Git LFS uses some features that

we covered previously, namely, filters and Git attributes.

Git LFS uses Git attributes to track which paths should be processed through LFS,

rather than Git’s normal persistence model. Filters are used to substitute the read and

write operations of plain Git, with those from Git LFS.

In order to be able to work with Git LFS, the repository manager that you are using

needs to support it. The large Git repository managers support Git LFS out of the box.

Some need a secondary storage to put the large files in, while others are able to maintain

them on a stand-alone basis. Consult the documentation for your specific repository

manager.

What happens when you track a path with Git LFS is that it will not write the full

binary object to the repository, but rather an empty dummy file. When the commit

is pushed, rather than pushing directly to the repository, it will be offloaded to the

secondary storage defined by the repository configuration on the central host. When you

check out a tracked path, Git LFS will, if necessary, download that file from secondary

storage and then check out that file to the given path. Except that you are unable to

work in offline mode when switching to previously non-checked-out versions, this will

function completely transparent. Figure 8-3 shows this workflow.

Chapter 8 Additional Git Features

https://git-lfs.github.com/

156

So rather than retrieving all commits with all objects when fetching, some objects are

not fetched by Git until they are needed by a given checkout.

�Tracking Files with Git LFS
In this section, we cover working with new files added to Git LFS. Later, we cover how to

remove large assets from your repository and moving them to Git LFS. Initially, we need

to run the command git lfs install to initialize Git LFS. This should only be done once per

local repository. After having done that, we can add paths to track using git lfs track path.

This will create an entry in the .gitattributes file, with the relevant properties. Commonly,

we want to track patterns of paths rather than concrete paths. This removes the need for

us to explicitly add all binary assets that we want to track with LFS individually. So we’d

rather use git lfs track *.iso than git lfs track image.iso.

After running the command git lfs track *.iso, the .gitattributes file should contain the

following:

*.iso filter=lfs diff=lfs merge=lfs -text

This means that whenever someone adds an ISO to our repository, it will be handled

by Git LFS. Assuming that your remote supports Git LFS, this is all you need to do.

As we covered earlier, commits are immutable, so this does not clean up binary

assets that were previously added to the repository. We cover how to find them and clean

them up in the next sections.

Figure 8-3.  Git LFS flow showing uploading to secondary storage during push
and downloading during a checkout

Chapter 8 Additional Git Features

157

�Git Sizer
It is not uncommon to have a feeling that working with one of your repositories is clunky.

Often, we even have a good idea about what is making the repository bothersome to work

with. But, if we are going to do a huge undertaking, like cleaning up our repository, we

should not do it on a gut feeling, we should do it based on a database. Fortunately, there

are free tools that can help us investigate our repository. One such tool is git-sizer https://

github.com/github/git-sizer. git-sizer allows us to analyze repositories and report

common problems with big Git repositories. Listing 8-2 shows a snapshot from analyzing

the DevOpsDays Assets repository. Even though it primarily contains binary assets, a

common cause of a repository that is too big, Git sizer only reports one problematic asset.

This shows that Git can be used sensibly for assets, if done right. The DevOpsDays web

team has also separated binary assets from the code base to make it easier to work with.

Listing 8-2.  Report from Git sizer

/pg-lfs$ ~/git-sizer

Processing blobs: 5

Processing trees: 4

Processing commits: 4

Matching commits to trees: 4

Processing annotated tags: 0

Processing references: 3

| Name | Value | Level of concern |

| ---------------------------- | --------- | ------------------------------ |

| Biggest objects | | |

| * Blobs | | |

| * Maximum size [1] | 81.6 MiB | ******** |

[1] 6660801deb787c5d0fa941801c73dd573381c4c6 (refs/heads/master:alpine-

rpi-3.12.0-armv7.tar.gz)

This report can be useful to determine if there are particular aspects of the repository

that we can address. The README of the git-sizer repository contains some remedies for

different Git repository size ailments. In our case, we are looking for problematic binary

assets, and now that we know how to use git-sizer to locate them, we move on to using

the BFG repo cleaner to move those files to Git LFS.

Chapter 8 Additional Git Features

https://github.com/github/git-sizer
https://github.com/github/git-sizer

158

�Converting a Repository to Git LFS
Now that we can detect problematic files that are already present in our repository, we

are ready to clean up the repository and make it a bit more efficient in our workflow.

We can use the BFG repo cleaner to remove unwanted files from our history. This

unwanted data can be sensitive information that we would prefer not have in the history

or more commonly binary assets that we either never should have added, or that have

grown problematic over time.

Caution  We are now moving into potentially dangerous territory. As long as we
are careful, these operations should be safe, but there are potentially destructive,
nonrecoverable scenarios that can occur. If, however, we are deliberate and move
with caution, we can prefer any unexpected incidents.

We can use Git LFS to rewrite our history and add problematic paths to Git LFS.

CONVERT TO LFS

This exercise involves forking a repository from GitHub and working in that, so complete it in

your terminal, wherever you put your repositories. Start by heading to https://github.com/

randomsort/practical-git-lfs and create a fork of that repository to your account. In this

exercise, I work from the fork pg-lfs. Note that this exercise requires a remote that supports Git

LFS. GitHub does this, but you might need to enable it on your settings page.

First off, I clone the repository that I work in, in this exercise. Replace the URL with your

personal fork.

$ git clone git@github.com:randomsort/pg-lfs

Cloning into 'pg-lfs'...

remote: Enumerating objects: 13, done.

remote: Total 13 (delta 0), reused 0 (delta 0), pack-reused 13

Receiving objects: 100% (13/13), 81.64 MiB | 11.28 MiB/s, done.

Resolving deltas: 100% (2/2), done.

It is not apparent from the printed terminal output, but this took a long, tedious time, which we

know kills developer productivity and motivation. So we look to see if we can find a problem.

Chapter 8 Additional Git Features

https://github.com/randomsort/practical-git-lfs
https://github.com/randomsort/practical-git-lfs

159

$ cd pg-lfs

/pg-lfs$ ls

LICENSE README.md alpine-rpi-3.12.0-armv7.tar.gz

We note that there is a tar.gz file and that the Git folder is large compared to such a small

repository. We run git-sizer to find out if there are any problems.

/pg-lfs$ du -s -h .git

82M .git

/pg-lfs$ ~/git-sizer

Processing blobs: 5

Processing trees: 4

Processing commits: 4

Matching commits to trees: 4

Processing annotated tags: 0

Processing references: 3

| Name | Value | Level of concern |

| ---------------------------- | --------- | ------------------------------ |

| Biggest objects | | |

| * Blobs | | |

| * Maximum size [1] | 81.6 MiB | ******** |

[1] 6660801deb787c5d0fa941801c73dd573381c4c6 (refs/heads/master:alpine-rpi-

3.12.0-armv7.tar.gz)

From the output of git-sizer, we see that at least a tar.gz file is problematic. We decide

it would be good to store tar.gz files in Git LFS, rather than directly in the Git repository. We

can use the git lfs migrate tool for that. We pass the patterns and references we want

Git LFS to treat.

/pg-lfs$ git lfs migrate import --include="*.tar.gz" --include-ref=master

migrate: Sorting commits: ..., done

migrate: Rewriting commits: 100% (4/4), done

 master 9a3d24f44a28e5f514633b834afbe6022062febe ->

873439a4869e29b388027465e2a488d68c977df2

migrate: Updating refs: ..., done

migrate: checkout: ..., done

/pg-lfs$ git status

On branch master

Your branch and 'origin/master' have diverged,

Chapter 8 Additional Git Features

160

and have 4 and 4 different commits each, respectively.

 (use "git pull" to merge the remote branch into yours)

nothing to commit, working tree clean

Git status tells us that we have all different commits and that our working directory is clean. In

this scenario, this shows that we have no commits in common with our remote.

/pg-lfs$ ls -al

total 4

drwxrwxrwx 1 randomsort randomsort 512 Aug 4 22:06 .

drwxrwxrwx 1 randomsort randomsort 512 Aug 4 22:03 ..

drwxrwxrwx 1 randomsort randomsort 512 Aug 4 22:06 .git

-rw-rw-rw- 1 randomsort randomsort 45 Aug 4 22:06 .gitattributes

-rw-rw-rw- 1 randomsort randomsort 1080 Aug 4 22:03 LICENSE

-rw-rw-rw- 1 randomsort randomsort 287 Aug 4 22:03 README.md

-rw-rw-rw- 1 randomsort randomsort 133 Aug 4 22:06 �alpine-rpi-3.12.0-armv7.tar.gz

randomsort@DESKTOP-3196DO6:~/repos/lfs2$ cat .gitattributes

*.tar.gz filter=lfs diff=lfs merge=lfs -text

The Git LFS migration added the correct entry to .gitattributes, retroactively. We are

happy with the state of our repository and push to the remote.

/pg-lfs$ git push --force

Counting objects: 14, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (8/8), done.

Writing objects: 100% (14/14), 2.34 KiB | 2.34 MiB/s, done.

Total 14 (delta 3), reused 14 (delta 3)

remote: Resolving deltas: 100% (3/3), done.

remote: This repository moved. Please use the new location:

remote: git@github.com:RandomSort/pg-lfs.git

To github.com:randomsort/pg-lfs

 + 9a3d24f...873439a master -> master (forced update)

A force push should not be done leisurely, and as mentioned earlier, we should use --force-

with-lease, but that does not work in this case as we have no common history. After

pushing to the remote, we clone to a separate location to see if we saved any space.

/pg-lfs$ cd ..

$ git clone git@github.com:randomsort/pg-lfs lfs2

Chapter 8 Additional Git Features

161

Cloning into 'lfs2'...

remote: Enumerating objects: 10, done.

remote: Counting objects: 100% (10/10), done.

remote: Compressing objects: 100% (6/6), done.

remote: Total 14 (delta 3), reused 10 (delta 3), pack-reused 4

Receiving objects: 100% (14/14), done.

Resolving deltas: 100% (3/3), done.

$ cd lfs2

/lfs2$ du -s -h .git

48K .git

/lfs2$ ls

LICENSE README.md alpine-rpi-3.12.0-armv7.tar.gz

Even though our workspace looks the same, our Git repository is only a fraction of the size.

48K compared to 82M is a difference that we cannot fathom without experiencing it. This will

have an impact on developer quality of life and have an impact on automation.

Remember to delete your fork so you don’t take up unnecessary resources at GitHub :).

This exercise showed how easy it is to slice a part of your repository out if it hurts you in terms

of size.

�Git Katas
To support the learning goals of this chapter, complete the following katas:

–– Bisect

–– Submodules

�Summary
In this chapter, we learned how to manage dependencies using submodules, to find bad

changesets efficiently using Git bisect, and finally to remove problematic assets from our

repositories with Git LFS.

I sincerely hope that none of these will be useful for you on a day-to-day basis, as

they represent corner cases. But now you are aware should the need arise for one of

these specialized Git features.

Chapter 8 Additional Git Features

163
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2_9

CHAPTER 9

Git Internals
As the book comes closer to its end, I will use a few pages geeking out about some of

the internals of Git, to help solidify the mental models and demystify the bowels of Git.

The purpose of this chapter is not to be thorough or exhaustive, nor will it allow you to

become a contributor to Git, though I do encourage everyone to consider contributing to

open source. We will open up the hood of Git and see how some of the components are

wired together, such that we can better reason about what is going on, and should the

worst come to worst, we can dig deep.

�The Git Graph
At the base level, Git is a graph of commits with labels. This graph is a so-called directed

acyclic graph, which has some interesting properties. Graph Theory is a mature and

widely studied area of computer science. Many of the foundational algorithms of Git are

from the domain of Graph Theory.

https://doi.org/10.1007/978-1-4842-6270-2_9#DOI

164

A graph is defined as a set of vertices and edges between them. In Git, a vertex is

implemented as a commit, with edges being represented as the parent pointers on

a commit. Figure 9-1 shows a Git graph with edges and vertices. That the graph is

directed means that each edge has a direction and thus can be considered an arrow.

Acyclic means that there are no cycles in the graph of commits. It is therefore not

possible to return to a commit by following the parent pointers outbound. This has

consequences for the validity of the algorithms Git uses. We are not going to go into

any depth with the graph theoretic background, but where relevant I will introduce the

term in this chapter.

�Commits
In the previous chapters, we have considered commits as the basic atomic unit, the

most fundamental part of Git. But much as an atom can be decomposed into neutrons,

protons, and electrons, we can break a commit apart into its composite elements.

As we have been versioning workspaces and discussing how these versions relate to

another, the commit is an appropriate level of abstraction. Commits are also the level of

abstraction that we work with in normal Git operations during software development.

Figure 9-1.  A Git graph of commits with parent pointers between them. Two
branches and HEAD are added

Chapter 9 Git Internals

165

A commit is composed of metadata such as ID, author, message, timestamp, and

parent pointer(s). The commit also contains a pointer to a tree, which is the data

structure that Git uses to store the state of the working directory. The commit data

structure is shown in Figure 9-2.

Figure 9-2.  The data contained in a commit

A crucial part of the commit data structure is the ID, the unique identifier for a given

commit. Git generates these unique IDs deterministically based on the content of the

commit. Git does this through a hash function. Hash functions have the property that

if their input changes, it is unpredictable what the output will become. We can safely

assume that if two commits have the same ID, they have the same content and are

thus the same commit. Git stores objects in .git/objects/ in a folder named the first

two characters of the ID, in a file named the 38 last characters of the ID. The commit

c70be832f3c02582ed3b587b282aa1c034f5dc1b thus lives in the folder .git/objects/c7/ in

the file 0be832f3c02582ed3b587b282aa1c034f5dc1b for a full path of .git/objects/c7/

0be832f3c02582ed3b587b282aa1c034f5dc1b.

Chapter 9 Git Internals

166

Figure 9-3.  Hashing content to a file system address

The preceding property is the reason Git is sometimes referred to as being content-

addressable. The content defines the ID and thus the address at which the content is

stored. As we cover in the next section, the tree also has an ID determined by its content,

which means that the ID of a commit is uniquely determined by its directory content and

metadata. Note that there can exist multiple commits with the same directory contents

but different metadata, even within a single repository.

A commit contains all this information. We can investigate the commit at HEAD

using the command show. We can pass it a ref, and without any, it will default to

HEAD. Show also appends the diff, demonstrating the changeset in Listing 9-1.

Chapter 9 Git Internals

167

Listing 9-1.  Using git show to display information about a commit

$ git log -1

commit 1135048cd36443eee6e28b472aa203b61997087b (HEAD -> master, origin/

master, origin/HEAD)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Thu May 21 13:35:18 2020 +0200

 Add the Practical Git Bio

$ git show

commit 1135048cd36443eee6e28b472aa203b61997087b (HEAD -> master, origin/

master, origin/HEAD)

Author: Johan Abildskov <randomsort@gmail.com>

Date: Thu May 21 13:35:18 2020 +0200

 Add the Practical Git Bio

diff --git a/the-practical-git.md b/the-practical-git.md

new file mode 100644

index 0000000..7e8aac9

--- /dev/null

+++ b/the-practical-git.md

@@ -0,0 +1,11 @@

+# The Practical Git

+

+Hi,

+I am the first to submit a pull request to this repository and I am so

happy to do it!

+

+I represent the book, so I am a part of an exercise, how exciting is this?!?

+

+Other than that, I hope you enjoy the book and contribute your bio to this

repository!

+

+Cheers,

+The Practical Git

Chapter 9 Git Internals

168

The output contains valuable information, but some of the information, like the

diff, is calculated. In scenarios where we want to investigate the raw content, we use the

command git cat-file. Cat-file allows us to output Git objects directly and if we use

the flag -p in a human-readable, rather than binary, format. I have only ever run into

two ways of using cat-file: using -p to investigate the content and using -s to check

the size. In Listing 9-2, I show running cat-file -p and -s to see the size of the commit

and the content as stored on disk. Digging deep like this is useful when hooks and filters

might interfere with a naïve workspace investigation.

Listing 9-2.  Using cat-file -p and -s to investigate a commit

$ git cat-file -p 11350

tree e119db480900fac506e721d6560fce9ffcc0765f

parent ce866b9f738529476f87347a76b0ba69e5ff0960

author Johan Abildskov <randomsort@gmail.com> 1590060918 +0200

committer Johan Abildskov <randomsort@gmail.com> 1590060918 +0200

Add the Practical Git Bio

$ git cat-file -s 113504

250

In Listing 9-2, we see the tree reference that we mentioned earlier. This tree object

contains the data on the root of the working directory that we are versioning. The data

contained in Listing 9-2 uniquely determines the commit ID, and directory content

uniquely determines the tree ID.

�Trees
While we at the abstract level have a Git graph of commits with pointers between them,

at the more concrete level, we are interested in the evolution of working directories and

how they relate. The tree object is what keeps track of a directory on a file system.

Trees contain lists of paths along with a type and reference to the object that needs

to be restored to that path. As trees can also reference trees, this allows Git to restore a

full working directory with nested folders. A path can reference either a tree, blob, or

commit. Trees represent nested folders, blobs file content, and commits submodules to

be instantiated at that path. An example tree listing is shown in Listing 9-3.

Chapter 9 Git Internals

169

Listing 9-3.  A tree listing

$ git cat-file -p 4f66

100644 blob f5b7a1a105b79d9b0bd889c4ba9c3feba88687fc README.md

100644 blob 9b2c04de2d845c775fa98f86fcf2bed7f0bf1549 setup.ps1

100755 blob 20cbad89573a7f1472e9bd2bcafd8441eedfecef setup.sh

040000 tree 85d92a502a5fa0297480932721ccd07c91bb9ef6 utils

In the next section, we will show how blobs work which will allow us to draw the full

image of Git’s internal data representation. An interesting point to make here is that the

blob solely contains the content of the file to be restored at that given path. This means

that the names in the tree listing are solely responsible for what a given file will be called

in the directory structure. This is also how Git does deduplication of files. Since the same

content will end up with the same hashed ID, multiple copies of the same file will not

take up space in the repository. Trees also reside in .git/objects.

�Blobs
Blobs are file content storage. Our intuition tells us that a file consists of a path including

the name, and some content. In Git, it is the tree or the folder abstraction that handles

path and filename information, so the only responsibility left for the blob is managing

the file content. IDs in Git are generated through hashing content using the sha1 or

sha256 algorithms. As mentioned previously, Git is considered content-addressable.

That is perhaps most evident when discussion blobs as their address, or file path, are

directly calculated from file content. The following code shows how changing a file a

little changes the blob ID unpredictably:

$ ls -alh

total 24K

drwxr-xr-x 1 rando 197609 0 aug 10 14:30 ./

drwxr-xr-x 1 rando 197609 0 aug 10 14:29 ../

drwxr-xr-x 1 rando 197609 0 aug 10 14:31 .git/

-rw-r--r-- 1 rando 197609 8,1K aug 10 14:31 file.txt

Chapter 9 Git Internals

170

$ git cat-file -p HEAD

tree b8041d12e65e591d4921bc3edfc9cabc23f9565a

author Johan Abildskov <randomsort@gmail.com> 1597062696 +0200

committer Johan Abildskov <randomsort@gmail.com> 1597062696 +0200

First commit

$ git cat-file -p b8041d12e65e591d4921bc3edfc9cabc23f9565a

100644 blob 02454bc2cea1cdbce18a1cdcc39d94fad5a9777f file.txt

$ echo " " >> file.txt

$ git add .

$ git commit -m "update file"

[master da9a6db] update file

 1 file changed, 1 insertion(+), 1 deletion(-)

$ git cat-file -p HEAD

tree 243983d2cef9f535fd2a6d728958e0b09398bf72

parent 41e1a39ebc9c3720d60945c95bd4bd7152dbc907

author Johan Abildskov <randomsort@gmail.com> 1597062777 +0200

committer Johan Abildskov <randomsort@gmail.com> 1597062777 +0200

update file

$ git cat-file -p 243983d2cef9f535fd2a6d728958e0b09398bf72

100644 blob 2f7720fb6a49470af72fbc2b56061e1871320c93 file.txt

In the preceding code, appending a whitespace character changes

the ID from 02454bc2cea1cdbce18a1cdcc39d94fad5a9777f to

243983d2cef9f535fd2a6d728958e0b09398bf72, two strings that have no obvious

connection. This is a property of hash functions. Another property of the hash function

is that collisions are so unlikely that they in practice do not happen. Collisions are when

two different inputs generate the same output. A reason for Git to migrate from sha1 to

sha256 is keeping collision generation difficult in the face of modern computing power.

The consequence of this is that it is impossible to have duplicate file contents, even with

different file names. It is also practically impossible to overwrite a file with content that

are different, as that would require a collision.

Chapter 9 Git Internals

171

�References
In Git, we have three reference types: branches, tags, and remotes. References are

lightweight with the exception of annotated tags. Lightweight means there is no

additional information attached to it, but it is a simple pointer.

Branches live in .git/refs/heads, while tags reside in .git/refs/tags. Remotes are

present in .git/refs/remotes and from our perspective can be seen as read-only

branches. This is because updating them should always come from an operation

involving fetching the information from the remote, rather than manipulating them

locally. As we discussed when covering branches earlier, references break our intuition

and mental model of how branches look and behave. In Git, references are labels that

mark a specific commit, such that it is easier to retrieve than by the ID directly. Tags can

be considered branches that are not moving.

HEAD is a special pointer that refers to what is currently checked out. HEAD can

either point to a local branch or a commit. If we try to switch to either a remote branch or

a tag, we will end up in detached HEAD state. In this case, we can lose our work because

new commits will not by default have a reference to them, so after some time, they will

be garbage collected.

The detached HEAD scenario is shown in the following code listing:

$ git log --oneline --decorate

da9a6db (HEAD -> master, tag: test) update file

41e1a39 First commit

$ git switch test

fatal: a branch is expected, got tag 'test'

$ git checkout test

Note: switching to 'test'.

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -c with the switch command. Example:

 git switch -c <new-branch-name>

Chapter 9 Git Internals

172

Or undo this operation with:

 git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at da9a6db update file

The solution here is to either create a new pointer to work from or check out an

already existing pointer to the relevant commit.

While our branches are not containing any information per se, the metainformation

they contain can be important for traceability – and asking such questions as where

was the master branch before I did this hard reset. For that, we can use git reflog. If we

pass a reference to git reflog, we get a list of how that pointer changed. We can then

use the references in there to check out commits based on where a reference has been.

Most commonly, we use indexes such as master@{1}, meaning where the master

reference was one change ago. There are also more abstract references such as master@

{yesterday} or master@{upstream} to check out where the tracking branch for master

points at. The following screenshot shows using the reflog in a trivial linear example.

Where it becomes really interesting is more complex history.

Listing 9-4.  Using git reflog to investigate where a pointer has been

$ git reflog

da9a6db (HEAD -> master, tag: test) HEAD@{0}: checkout: moving from

41e1a39ebc9c3720d60945c95bd4bd7152dbc907 to master

41e1a39 HEAD@{1}: checkout: moving from master to master@{1}

da9a6db (HEAD -> master, tag: test) HEAD@{2}: checkout: moving from

da9a6dbe39f09e98520f208e2b94ec610af1af4f to master

da9a6db (HEAD -> master, tag: test) HEAD@{3}: checkout: moving from master

to test

da9a6db (HEAD -> master, tag: test) HEAD@{4}: commit: update file

41e1a39 HEAD@{5}: commit (initial): First commit

$ git checkout master@{1}

Note: switching to 'master@{1}'.

Chapter 9 Git Internals

173

You are in 'detached HEAD' state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may

do so (now or later) by using -c with the switch command. Example:

 git switch -c <new-branch-name>

Or undo this operation with:

 git switch -

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at 41e1a39 First commit

Note that the reflog is a purely local concept and is not shared across multiple clones

of the same repository.

�Versioning with Trees
We have covered all the constituent parts, so we have the framework to discuss how

versioning works in Git. We have HEAD that points to a branch, that points to a commit,

that points to a tree, and that tree points to blobs and trees. While the previous sentence

is all we need to know, it is also shown in Figure 9-4, in an actually digestible format.

Figure 9-4.  A single initial commit with underlying objects

Chapter 9 Git Internals

174

In Figure 9-4, a single commit with corresponding Git object structure is shown. This

looks remarkable as a one-to-one mapping of a file system. And the really interesting

part happens when we add more commits. Git will reuse as much as possible from

already existing commits. This comes for free given the content-addressable nature of

Git. This means that only the trees that contain changes will need to be created, as the

trees that already exist will be reused as they have the correct address. During a commit

operation, no blob objects will be removed; it is rather an additive procedure only

creating the blobs needed to represent the current working directory. This reuse is why

Git isn’t greedily globbing up your hard drive with all the different versions you have

around. Figure 9-5 shows how changing a file creates new tree and blob objects while

reusing the unchanged ones.

Figure 9-5.  Creating a commit reuses objects and tree

Note I f any file in the working directory changes, by being added, deleted, or
modified, this will ultimately end up with a change root tree. If the room tree is
unchanged, directory content is unchanged. Git will normally not accept this, but
you can force it to with the flag --allow-empty when committing.

Chapter 9 Git Internals

175

GIT INTERNALS

In this exercise, we start with an empty repository and slowly investigate what parts are

showing up in our repository as we add content. This exercise starts by creating an empty

repository locally, so you can start where you have a command line. Note that all IDs will be

different from what you see in the exercise, so if you naively copy paste the commands, they

are unlikely to succeed.

We start by initializing an empty repository and poke around to see what we can find.

$ git init pg-internals

Initialized empty Git repository in /user/randomsort/pg-internals/.git/

$ cd pg-internals/

$ ls -al .git

total 24

drwxr-xr-x. 4 randomsort users 4096 Aug 11 13:43 .

drwxr-xr-x. 3 randomsort users 4096 Aug 11 13:43 ..

-rw-r--r--. 1 randomsort users 92 Aug 11 13:43 config

-rw-r--r--. 1 randomsort users 23 Aug 11 13:43 HEAD

drwxr-xr-x. 4 randomsort users 4096 Aug 11 13:43 objects

drwxr-xr-x. 4 randomsort users 4096 Aug 11 13:43 refs

$ ls .git/objects

info pack

The first interesting part to note is that the object folder is empty except for the info and pack folders.

These are folders used for Git’s compression. They are empty in a newly initialized repository.

$ ls .git/refs

heads tags

$ ls .git/refs/heads

We have the refs folders, but we can see there are no branches.

$ cat .git/HEAD

ref: refs/heads/master

HEAD is still pointing to the master branch even though it does not exist. This is a situation

where a corner case just needs to be handled. Either HEAD would not exist, the branch it

points to not exist, or the object the branch points to be missing. From the following status

command, we can see that Git is clearly aware of the situation, but if we try to check out the

master branch, we get an error.

Chapter 9 Git Internals

176

$ git status

On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

$ git checkout master

error: pathspec 'master' did not match any file(s) known to git

Let’s create the first commit.

$ echo "# First data" > README.md

$ git add README.md

$ git commit -m "Initial Commit"

[master (root-commit) 2fb5c2e] Initial Commit

 1 file changed, 1 insertion(+)

 create mode 100644 README.md

After having created the first commit, we expect to see three objects in the .git/objects

folders: one for the commit, one for the tree, and one for the blob.

$ ls .git/objects

2f bf d4 info pack

$ ls .git/objects/2f

b5c2e86d6f21d52d2f05b07ed524669f10d07f

Without being thorough, we can see we have three objects. We can use cat-file to check the

content of any given object here. We note that the ID of the object is the folder name (2f)

concatenated with the file name (b5c2e86d6f21d52d2f05b07ed524669f10d07f). Similar

to when we reference commits, we can use a unique prefix of the full ID.

$ git cat-file -p 2fb5c

tree bfd4eb4e8767678f4abfe229f7ee701ca9ee0b69

author Johan Abildskov <randomsort@gmail.com> 1597146899 +0200

committer Johan Abildskov <randomsort@gmail.com> 1597146899 +0200

Initial Commit

So it seems we hit the commit object in this scenario.

Now we create a subdirectory with a file to see how that changes our objects.

Chapter 9 Git Internals

177

$ mkdir subdir

$ echo "important content" > subdir/file.txt

$ git add subdir/file.txt

$ git commit -m "Add important content"

[master 62b545d] Add important content

 1 file changed, 1 insertion(+)

 create mode 100644 subdir/file.txt

$ ls .git/objects

24 2f 3a 62 bf c9 d4 info pack

Here, we see we end up with seven objects compared to the three in the initial commit. We

end up with this because we create a new commit, a new root tree object, a tree object for

subdir, and a blob object for the file – plus, the original three objects that are still around. We

are not creating a new blob for README.md as it is unchanged and will be reused. We can use

cat-file again to see the content of the new commit, and note that we have a new tree object.

$ git cat-file -p HEAD

tree 3a7a21c251d2e8c05a6c1c7c2c866c4c3821e97e

parent 2fb5c2e86d6f21d52d2f05b07ed524669f10d07f

author Johan Abildskov <randomsort@gmail.com> 1597147088 +0200

committer Johan Abildskov <randomsort@gmail.com> 1597147088 +0200

Add important content

Git filters and drivers can cause Git repository content to be different in the working directory

than in the repository. This is true in the case of Git LFS, but it could also be local configuration

such as line endings.

In the case where we want to see what is really stored in Git, we can use git ls-tree to

find what the blob is for a given path at a given point in time. In the following line, we tell Git

to go through trees recursively and search for subdir/file.txt in the revision HEAD. Instead of

HEAD, we could have provided an arbitrary tree or commit object.

$ git ls-tree -r HEAD subdir/file.txt

100644 blob 24013f7d4de4b5143b03c76db8656625c00798d2 subdir/file.txt

Now that we have tinkered with objects, let’s manipulate a few branches. First, let’s see what

branches are present.

$ git branch

* master

$ ls .git/refs/heads

master

Chapter 9 Git Internals

178

We have the master branch, and we can see it is now also present in refs/

heads. We can conclude that the file representing the branch was created when

we made the first commit.

Under normal circumstances we use Git to create branches, but it is trivial

to do so manually.

$ cp .git/refs/heads/master .git/refs/heads/practical-git

$ git branch

* master

 practical-git

By the magic of a copy command, we have created a new branch. The consequence of this is

that creating a branch is tremendously cheap, as all the file contains is the sha of the commit.

HEAD points to master, so let’s check out our other branch.

$ echo "ref: refs/heads/practical-git" > .git/HEAD

$ git status

On branch practical-git

nothing to commit, working tree clean

As we can see, we successfully switched branches, manually. There is of course the caveat

that our status would potentially be tremendously different if the branches are not pointing to

the same commit.

�Katas
To support the learning goal of this chapter, I recommend you to go through the

following katas:

–– Investigation

–– Reset (You did this exercise earlier, but now you should have a better

foundation to reason about what is going on. Remember to use reflog!)

�Summary
This chapter has walked you through some of Git’s internal structures to further build

your understanding how Git is working. Except for the reflog, you should never have to

dig this deep again, but I hope that you enjoyed the trip!

Chapter 9 Git Internals

179
© Johan Abildskov 2020
J. Abildskov, Practical Git, https://doi.org/10.1007/978-1-4842-6270-2

Index

A
ad hoc approach, 2

B
Binary search, 140
Branches, 7, 9

committing, 52
creating, 59, 60
different version, 56, 57
foundation, 49–51
Git Katas, 58, 80
HEAD, 51, 52
merging

conflicts, 68–71
defining, 62
fast-forward, 62–64
three-way, 65–68

previous version, 53–55
rebase, 72–75
tags, 75–77, 79, 80

C, D, E
Client/server-based version control

systems, 84
command pwd, 24
Commits, 5, 6

abstraction, 164
amend, 38, 40

Cat-file, 168
changeset, 167
data structure, 165
file system address, 166
Git, 29, 31–34
.gitignore, 40, 41, 43–46
.Git Katas, 46
hash functions, 165
messages, 34
metadata, 165
stage, 22–28
subject/header, 35–37
unique IDs, 165
workspace, 19, 20, 22

Continuous integration system, 75
Customizing Git

aliases, 123–125
attributes, 125, 126
configurations, 119–122
diff/merge tools, 131–134
hooks, 135–137
Katas, 137
merge markers, 129, 130
Mergesort-Impl, 127, 128
operation, 119
untracked files, 131

F
Fork-based workflows, 5, 96–99, 101

https://doi.org/10.1007/978-1-4842-6270-2#DOI

180

G, H
Git bisect

binary search, 140
commits, 139
endpoints, 141
initial commit, 143, 144
linear fashion, 140
nonbreaking change, 139
test.sh script, 141, 142

Git clone, 9–11, 13
.gitignore, 40–46
Git Katas, 9–11, 46, 58, 80, 104, 106, 114,

118, 145, 146, 161
Git Large File Storage (LFS)

artifact management strategy,
126, 139, 154, 155

converting repository, 158
--force-with-lease, 160
.gitattributes, 160
implementation, 155
sizer, 157
tracking files, 156

Git log, 15–17
Git’s internal structures

graph (see Graph)
katas, 178

Git status, 14, 15
Git submodules

cloning, 151
configuration, 145
file.txt, 153
foreach, 150
initialization, 152
kata repository, 146, 147
native dependency management, 145

product repository, 148
Python, 144
single specific product, 151
vantage point, 150
version, 153

Graph
blobs, 169, 170
commits (see Commits)
directed acyclic, 163
references (see References)
trees, 168, 169
versioning (see Versioning)
vertices/edges, 164

Graph Theory, 163

I, J, K
Interactive rebase, 107, 111, 117, 118

L
Large File Storage (LFS), 126, 139, 154, 155

M, N, O
Manipulating history

Git katas, 118
interactive rebase, 117

Master-workflow, 91, 92, 94–96

P, Q
Pull request

commit, 100
contributor, 103
create, 101

Index

181

open, 102
tab, 103

Pull request–based workflow, 104, 105

R
References

git reflog, 172, 173
HEAD, 171
lightweight, 171
remotes, 171
traceability, 172

Remote repository
cloning, 85, 86
fetch/merge loop, 88
synchronize, 87

Repositories, 3, 4
Reset

Git commands, 110
hard, 113, 114
master branch, 115
mixed, 112
soft mode, 111
untracked files, 117
user experience, 110

Reverting commits
changeset, 107, 108
logic of git, 107

semantics, 110
traceability, 108

S
Simplified workflow, 89

happy scenario, 89
merges, 90
race condition scenario, 90

T, U
Tag, 6, 7

V, W, X, Y, Z
Versioning

content-addressable
nature, 174

control, 1–3, 107
empty repository, 175
.git/objects folders, 176
HEAD, 175, 178
objects/trees, 174
README.md, 177
single initial commit, 173
subdirectory, 176
subdir/file.txt, 177

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Chapter 1: Git Intuition
	Version Control
	Basic Git Concepts
	The Repository
	The Commit
	The Branch and the Tag
	The Tag
	The Branch

	Setting Up Git and the Git Katas
	Git Clone
	The .git Folder

	Getting Our Bearings in a Repository
	Git Status
	Git Log

	Summary

	Chapter 2: Building Commits
	What’s in a Workspace
	Preparing Commits Using the Stage
	Committing
	Git Commit
	Good, Bad, and UGLY Commit Messages
	The Subject or Header

	Recovering from Oops Moments with amend
	Getting Clean Commits with .gitignore
	Advanced .gitignore
	Globbing git ignore

	Git Katas
	Summary

	Chapter 3: Linear History
	Branching Foundations
	Keeping Track of Your HEAD

	Committing on Your Branches
	Checking Out a Previous Version
	Seeing the Diff Between Different Versions
	Git Katas
	Summary

	Chapter 4: Complex Branching
	Creating Branches
	Working with Multiple Branches
	Merge
	Fast-Forward Merges
	Three-Way Merges
	Merge Conflicts

	Rebase

	Tags
	Detached HEAD

	Git Katas
	Summary

	Chapter 5: Collaboration in Git
	Working with Remotes
	Cloning
	Synchronizing with Remote

	Simplified Workflow
	Fork-Based Workflows
	Pull Request–Based Workflows
	Git Flow
	Git Katas
	Summary

	Chapter 6: Manipulating History
	Reverting Commits
	Reset
	Soft Reset
	Mixed Reset
	Hard Reset

	Interactive Rebase
	Git Katas
	Summary

	Chapter 7: Customizing Git
	Configuring Git
	Aliases
	Attributes
	Diff and Merge Tools
	Hooks
	Katas
	Summary

	Chapter 8: Additional Git Features
	Git Bisect
	Git Submodules
	Git Large File Storage
	Implementation
	Tracking Files with Git LFS
	Git Sizer
	Converting a Repository to Git LFS

	Git Katas
	Summary

	Chapter 9: Git Internals
	The Git Graph
	Commits
	Trees
	Blobs
	References
	Versioning with Trees

	Katas
	Summary

	Index

